mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 15:18:29 +00:00
Some checks failed
Mark stale issues and pull requests / stale (push) Has been cancelled
* Preparing new version
285 lines
9.6 KiB
Python
285 lines
9.6 KiB
Python
import warnings
|
|
from abc import ABC, abstractmethod
|
|
from inspect import signature
|
|
from typing import Any, Callable, Type, get_args, get_origin
|
|
|
|
from pydantic import (
|
|
BaseModel,
|
|
ConfigDict,
|
|
Field,
|
|
PydanticDeprecatedSince20,
|
|
create_model,
|
|
validator,
|
|
)
|
|
from pydantic import BaseModel as PydanticBaseModel
|
|
|
|
from crewai.tools.structured_tool import CrewStructuredTool
|
|
|
|
# Ignore all "PydanticDeprecatedSince20" warnings globally
|
|
warnings.filterwarnings("ignore", category=PydanticDeprecatedSince20)
|
|
|
|
|
|
class BaseTool(BaseModel, ABC):
|
|
class _ArgsSchemaPlaceholder(PydanticBaseModel):
|
|
pass
|
|
|
|
model_config = ConfigDict()
|
|
|
|
name: str
|
|
"""The unique name of the tool that clearly communicates its purpose."""
|
|
description: str
|
|
"""Used to tell the model how/when/why to use the tool."""
|
|
args_schema: Type[PydanticBaseModel] = Field(default_factory=_ArgsSchemaPlaceholder)
|
|
"""The schema for the arguments that the tool accepts."""
|
|
description_updated: bool = False
|
|
"""Flag to check if the description has been updated."""
|
|
cache_function: Callable = lambda _args=None, _result=None: True
|
|
"""Function that will be used to determine if the tool should be cached, should return a boolean. If None, the tool will be cached."""
|
|
result_as_answer: bool = False
|
|
"""Flag to check if the tool should be the final agent answer."""
|
|
|
|
@validator("args_schema", always=True, pre=True)
|
|
def _default_args_schema(
|
|
cls, v: Type[PydanticBaseModel]
|
|
) -> Type[PydanticBaseModel]:
|
|
if not isinstance(v, cls._ArgsSchemaPlaceholder):
|
|
return v
|
|
|
|
return type(
|
|
f"{cls.__name__}Schema",
|
|
(PydanticBaseModel,),
|
|
{
|
|
"__annotations__": {
|
|
k: v for k, v in cls._run.__annotations__.items() if k != "return"
|
|
},
|
|
},
|
|
)
|
|
|
|
def model_post_init(self, __context: Any) -> None:
|
|
self._generate_description()
|
|
|
|
super().model_post_init(__context)
|
|
|
|
def run(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
print(f"Using Tool: {self.name}")
|
|
return self._run(*args, **kwargs)
|
|
|
|
@abstractmethod
|
|
def _run(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Here goes the actual implementation of the tool."""
|
|
|
|
def to_structured_tool(self) -> CrewStructuredTool:
|
|
"""Convert this tool to a CrewStructuredTool instance."""
|
|
self._set_args_schema()
|
|
return CrewStructuredTool(
|
|
name=self.name,
|
|
description=self.description,
|
|
args_schema=self.args_schema,
|
|
func=self._run,
|
|
result_as_answer=self.result_as_answer,
|
|
)
|
|
|
|
@classmethod
|
|
def from_langchain(cls, tool: Any) -> "BaseTool":
|
|
"""Create a Tool instance from a CrewStructuredTool.
|
|
|
|
This method takes a CrewStructuredTool object and converts it into a
|
|
Tool instance. It ensures that the provided tool has a callable 'func'
|
|
attribute and infers the argument schema if not explicitly provided.
|
|
"""
|
|
if not hasattr(tool, "func") or not callable(tool.func):
|
|
raise ValueError("The provided tool must have a callable 'func' attribute.")
|
|
|
|
args_schema = getattr(tool, "args_schema", None)
|
|
|
|
if args_schema is None:
|
|
# Infer args_schema from the function signature if not provided
|
|
func_signature = signature(tool.func)
|
|
annotations = func_signature.parameters
|
|
args_fields = {}
|
|
for name, param in annotations.items():
|
|
if name != "self":
|
|
param_annotation = (
|
|
param.annotation if param.annotation != param.empty else Any
|
|
)
|
|
field_info = Field(
|
|
default=...,
|
|
description="",
|
|
)
|
|
args_fields[name] = (param_annotation, field_info)
|
|
if args_fields:
|
|
args_schema = create_model(f"{tool.name}Input", **args_fields)
|
|
else:
|
|
# Create a default schema with no fields if no parameters are found
|
|
args_schema = create_model(
|
|
f"{tool.name}Input", __base__=PydanticBaseModel
|
|
)
|
|
|
|
return cls(
|
|
name=getattr(tool, "name", "Unnamed Tool"),
|
|
description=getattr(tool, "description", ""),
|
|
func=tool.func,
|
|
args_schema=args_schema,
|
|
)
|
|
|
|
def _set_args_schema(self):
|
|
if self.args_schema is None:
|
|
class_name = f"{self.__class__.__name__}Schema"
|
|
self.args_schema = type(
|
|
class_name,
|
|
(PydanticBaseModel,),
|
|
{
|
|
"__annotations__": {
|
|
k: v
|
|
for k, v in self._run.__annotations__.items()
|
|
if k != "return"
|
|
},
|
|
},
|
|
)
|
|
|
|
def _generate_description(self):
|
|
args_schema = {
|
|
name: {
|
|
"description": field.description,
|
|
"type": BaseTool._get_arg_annotations(field.annotation),
|
|
}
|
|
for name, field in self.args_schema.model_fields.items()
|
|
}
|
|
|
|
self.description = f"Tool Name: {self.name}\nTool Arguments: {args_schema}\nTool Description: {self.description}"
|
|
|
|
@staticmethod
|
|
def _get_arg_annotations(annotation: type[Any] | None) -> str:
|
|
if annotation is None:
|
|
return "None"
|
|
|
|
origin = get_origin(annotation)
|
|
args = get_args(annotation)
|
|
|
|
if origin is None:
|
|
return (
|
|
annotation.__name__
|
|
if hasattr(annotation, "__name__")
|
|
else str(annotation)
|
|
)
|
|
|
|
if args:
|
|
args_str = ", ".join(BaseTool._get_arg_annotations(arg) for arg in args)
|
|
return f"{origin.__name__}[{args_str}]"
|
|
|
|
return origin.__name__
|
|
|
|
|
|
class Tool(BaseTool):
|
|
"""The function that will be executed when the tool is called."""
|
|
|
|
func: Callable
|
|
|
|
def _run(self, *args: Any, **kwargs: Any) -> Any:
|
|
return self.func(*args, **kwargs)
|
|
|
|
@classmethod
|
|
def from_langchain(cls, tool: Any) -> "Tool":
|
|
"""Create a Tool instance from a CrewStructuredTool.
|
|
|
|
This method takes a CrewStructuredTool object and converts it into a
|
|
Tool instance. It ensures that the provided tool has a callable 'func'
|
|
attribute and infers the argument schema if not explicitly provided.
|
|
|
|
Args:
|
|
tool (Any): The CrewStructuredTool object to be converted.
|
|
|
|
Returns:
|
|
Tool: A new Tool instance created from the provided CrewStructuredTool.
|
|
|
|
Raises:
|
|
ValueError: If the provided tool does not have a callable 'func' attribute.
|
|
"""
|
|
if not hasattr(tool, "func") or not callable(tool.func):
|
|
raise ValueError("The provided tool must have a callable 'func' attribute.")
|
|
|
|
args_schema = getattr(tool, "args_schema", None)
|
|
|
|
if args_schema is None:
|
|
# Infer args_schema from the function signature if not provided
|
|
func_signature = signature(tool.func)
|
|
annotations = func_signature.parameters
|
|
args_fields = {}
|
|
for name, param in annotations.items():
|
|
if name != "self":
|
|
param_annotation = (
|
|
param.annotation if param.annotation != param.empty else Any
|
|
)
|
|
field_info = Field(
|
|
default=...,
|
|
description="",
|
|
)
|
|
args_fields[name] = (param_annotation, field_info)
|
|
if args_fields:
|
|
args_schema = create_model(f"{tool.name}Input", **args_fields)
|
|
else:
|
|
# Create a default schema with no fields if no parameters are found
|
|
args_schema = create_model(
|
|
f"{tool.name}Input", __base__=PydanticBaseModel
|
|
)
|
|
|
|
return cls(
|
|
name=getattr(tool, "name", "Unnamed Tool"),
|
|
description=getattr(tool, "description", ""),
|
|
func=tool.func,
|
|
args_schema=args_schema,
|
|
)
|
|
|
|
|
|
def to_langchain(
|
|
tools: list[BaseTool | CrewStructuredTool],
|
|
) -> list[CrewStructuredTool]:
|
|
return [t.to_structured_tool() if isinstance(t, BaseTool) else t for t in tools]
|
|
|
|
|
|
def tool(*args):
|
|
"""
|
|
Decorator to create a tool from a function.
|
|
"""
|
|
|
|
def _make_with_name(tool_name: str) -> Callable:
|
|
def _make_tool(f: Callable) -> BaseTool:
|
|
if f.__doc__ is None:
|
|
raise ValueError("Function must have a docstring")
|
|
if f.__annotations__ is None:
|
|
raise ValueError("Function must have type annotations")
|
|
|
|
class_name = "".join(tool_name.split()).title()
|
|
args_schema = type(
|
|
class_name,
|
|
(PydanticBaseModel,),
|
|
{
|
|
"__annotations__": {
|
|
k: v for k, v in f.__annotations__.items() if k != "return"
|
|
},
|
|
},
|
|
)
|
|
|
|
return Tool(
|
|
name=tool_name,
|
|
description=f.__doc__,
|
|
func=f,
|
|
args_schema=args_schema,
|
|
)
|
|
|
|
return _make_tool
|
|
|
|
if len(args) == 1 and callable(args[0]):
|
|
return _make_with_name(args[0].__name__)(args[0])
|
|
if len(args) == 1 and isinstance(args[0], str):
|
|
return _make_with_name(args[0])
|
|
raise ValueError("Invalid arguments")
|