mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 23:58:34 +00:00
Some checks failed
* WIP: v1 docs (#3626) (cherry picked from commit d46e20fa09bcd2f5916282f5553ddeb7183bd92c) * docs: parity for all translations * docs: full name of acronym AMP * docs: fix lingering unused code * docs: expand contextual options in docs.json * docs: add contextual action to request feature on GitHub * chore: tidy docs formatting
100 lines
3.7 KiB
Plaintext
100 lines
3.7 KiB
Plaintext
---
|
|
title: Input Humano na Execução
|
|
description: Integrando o CrewAI com input humano durante a execução em processos complexos de tomada de decisão e aproveitando ao máximo todos os atributos e ferramentas do agente.
|
|
icon: user-plus
|
|
mode: "wide"
|
|
---
|
|
|
|
## Input humano na execução dos agentes
|
|
|
|
O input humano é fundamental em vários cenários de execução de agentes, permitindo que os agentes solicitem informações adicionais ou esclarecimentos quando necessário.
|
|
Esse recurso é especialmente útil em processos complexos de tomada de decisão ou quando os agentes precisam de mais detalhes para concluir uma tarefa de forma eficaz.
|
|
|
|
## Usando input humano com CrewAI
|
|
|
|
Para integrar input humano durante a execução do agente, defina o parâmetro `human_input` na definição da tarefa. Quando ativado, o agente solicitará informações ao usuário antes de fornecer sua resposta final.
|
|
Esse input pode oferecer contexto extra, esclarecer ambiguidades ou validar a saída produzida pelo agente.
|
|
|
|
### Exemplo:
|
|
|
|
```shell
|
|
pip install crewai
|
|
```
|
|
|
|
```python Code
|
|
import os
|
|
from crewai import Agent, Task, Crew
|
|
from crewai_tools import SerperDevTool
|
|
|
|
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
|
os.environ["OPENAI_API_KEY"] = "Your Key"
|
|
|
|
# Loading Tools
|
|
search_tool = SerperDevTool()
|
|
|
|
# Define your agents with roles, goals, tools, and additional attributes
|
|
researcher = Agent(
|
|
role='Senior Research Analyst',
|
|
goal='Uncover cutting-edge developments in AI and data science',
|
|
backstory=(
|
|
"You are a Senior Research Analyst at a leading tech think tank. "
|
|
"Your expertise lies in identifying emerging trends and technologies in AI and data science. "
|
|
"You have a knack for dissecting complex data and presenting actionable insights."
|
|
),
|
|
verbose=True,
|
|
allow_delegation=False,
|
|
tools=[search_tool]
|
|
)
|
|
writer = Agent(
|
|
role='Tech Content Strategist',
|
|
goal='Craft compelling content on tech advancements',
|
|
backstory=(
|
|
"You are a renowned Tech Content Strategist, known for your insightful and engaging articles on technology and innovation. "
|
|
"With a deep understanding of the tech industry, you transform complex concepts into compelling narratives."
|
|
),
|
|
verbose=True,
|
|
allow_delegation=True,
|
|
tools=[search_tool],
|
|
cache=False, # Disable cache for this agent
|
|
)
|
|
|
|
# Create tasks for your agents
|
|
task1 = Task(
|
|
description=(
|
|
"Conduct a comprehensive analysis of the latest advancements in AI in 2025. "
|
|
"Identify key trends, breakthrough technologies, and potential industry impacts. "
|
|
"Compile your findings in a detailed report. "
|
|
"Make sure to check with a human if the draft is good before finalizing your answer."
|
|
),
|
|
expected_output='A comprehensive full report on the latest AI advancements in 2025, leave nothing out',
|
|
agent=researcher,
|
|
human_input=True
|
|
)
|
|
|
|
task2 = Task(
|
|
description=(
|
|
"Using the insights from the researcher\'s report, develop an engaging blog post that highlights the most significant AI advancements. "
|
|
"Your post should be informative yet accessible, catering to a tech-savvy audience. "
|
|
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
|
|
),
|
|
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2025',
|
|
agent=writer,
|
|
human_input=True
|
|
)
|
|
|
|
# Instantiate your crew with a sequential process
|
|
crew = Crew(
|
|
agents=[researcher, writer],
|
|
tasks=[task1, task2],
|
|
verbose=True,
|
|
memory=True,
|
|
planning=True # Enable planning feature for the crew
|
|
)
|
|
|
|
# Get your crew to work!
|
|
result = crew.kickoff()
|
|
|
|
print("######################")
|
|
print(result)
|
|
```
|