Files
crewAI/docs/pt-BR/learn/human-input-on-execution.mdx
Tony Kipkemboi bf9e0423f2
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
chore(docs): bring AMP doc refresh from release/v1.0.0 into main (#3637)
* WIP: v1 docs (#3626)

(cherry picked from commit d46e20fa09bcd2f5916282f5553ddeb7183bd92c)

* docs: parity for all translations

* docs: full name of acronym AMP

* docs: fix lingering unused code

* docs: expand contextual options in docs.json

* docs: add contextual action to request feature on GitHub

* chore: tidy docs formatting
2025-10-02 11:36:04 -04:00

100 lines
3.7 KiB
Plaintext

---
title: Input Humano na Execução
description: Integrando o CrewAI com input humano durante a execução em processos complexos de tomada de decisão e aproveitando ao máximo todos os atributos e ferramentas do agente.
icon: user-plus
mode: "wide"
---
## Input humano na execução dos agentes
O input humano é fundamental em vários cenários de execução de agentes, permitindo que os agentes solicitem informações adicionais ou esclarecimentos quando necessário.
Esse recurso é especialmente útil em processos complexos de tomada de decisão ou quando os agentes precisam de mais detalhes para concluir uma tarefa de forma eficaz.
## Usando input humano com CrewAI
Para integrar input humano durante a execução do agente, defina o parâmetro `human_input` na definição da tarefa. Quando ativado, o agente solicitará informações ao usuário antes de fornecer sua resposta final.
Esse input pode oferecer contexto extra, esclarecer ambiguidades ou validar a saída produzida pelo agente.
### Exemplo:
```shell
pip install crewai
```
```python Code
import os
from crewai import Agent, Task, Crew
from crewai_tools import SerperDevTool
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
os.environ["OPENAI_API_KEY"] = "Your Key"
# Loading Tools
search_tool = SerperDevTool()
# Define your agents with roles, goals, tools, and additional attributes
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI and data science',
backstory=(
"You are a Senior Research Analyst at a leading tech think tank. "
"Your expertise lies in identifying emerging trends and technologies in AI and data science. "
"You have a knack for dissecting complex data and presenting actionable insights."
),
verbose=True,
allow_delegation=False,
tools=[search_tool]
)
writer = Agent(
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory=(
"You are a renowned Tech Content Strategist, known for your insightful and engaging articles on technology and innovation. "
"With a deep understanding of the tech industry, you transform complex concepts into compelling narratives."
),
verbose=True,
allow_delegation=True,
tools=[search_tool],
cache=False, # Disable cache for this agent
)
# Create tasks for your agents
task1 = Task(
description=(
"Conduct a comprehensive analysis of the latest advancements in AI in 2025. "
"Identify key trends, breakthrough technologies, and potential industry impacts. "
"Compile your findings in a detailed report. "
"Make sure to check with a human if the draft is good before finalizing your answer."
),
expected_output='A comprehensive full report on the latest AI advancements in 2025, leave nothing out',
agent=researcher,
human_input=True
)
task2 = Task(
description=(
"Using the insights from the researcher\'s report, develop an engaging blog post that highlights the most significant AI advancements. "
"Your post should be informative yet accessible, catering to a tech-savvy audience. "
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
),
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2025',
agent=writer,
human_input=True
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=True,
memory=True,
planning=True # Enable planning feature for the crew
)
# Get your crew to work!
result = crew.kickoff()
print("######################")
print(result)
```