Files
crewAI/src/crewai/knowledge/storage/knowledge_storage.py
2025-03-11 05:52:17 +00:00

261 lines
9.3 KiB
Python

import contextlib
import hashlib
import io
import logging
import os
import shutil
from typing import Any, Dict, List, Optional, Union, cast
try:
import chromadb
import chromadb.errors
from chromadb.api import ClientAPI
from chromadb.api.types import OneOrMany
from chromadb.config import Settings
CHROMADB_AVAILABLE = True
except ImportError:
CHROMADB_AVAILABLE = False
# Define placeholder types for type checking
ClientAPI = Any
OneOrMany = Any
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
from crewai.utilities.paths import db_storage_path
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class KnowledgeStorage(BaseKnowledgeStorage):
"""
Extends Storage to handle embeddings for memory entries, improving
search efficiency.
"""
collection: Optional[Any] = None # Will be chromadb.Collection when available
collection_name: Optional[str] = "knowledge"
app: Optional[Any] = None # Will be ClientAPI when available
embedder: Optional[Any] = None
def __init__(
self,
embedder: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
):
self.collection_name = collection_name
self._set_embedder_config(embedder)
def search(
self,
query: List[str],
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
if not CHROMADB_AVAILABLE:
logging.warning(
"ChromaDB is not installed. Search functionality limited. "
"Install with 'pip install crewai[chromadb]' to enable full functionality."
)
return []
try:
with suppress_logging():
if self.collection:
fetched = self.collection.query(
query_texts=query,
n_results=limit,
where=filter,
)
results = []
for i in range(len(fetched["ids"][0])): # type: ignore
result = {
"id": fetched["ids"][0][i], # type: ignore
"metadata": fetched["metadatas"][0][i], # type: ignore
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold:
results.append(result)
return results
else:
return []
except (ImportError, NameError, AttributeError, Exception) as e:
logging.error(f"Error during knowledge search operation: {str(e)}")
return []
def initialize_knowledge_storage(self):
if not CHROMADB_AVAILABLE:
import logging
logging.warning(
"ChromaDB is not installed. Knowledge storage functionality will be limited. "
"Install with 'pip install crewai[chromadb]' to enable full functionality."
)
self.app = None
self.collection = None
return
try:
base_path = os.path.join(db_storage_path(), "knowledge")
chroma_client = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
collection_name = (
f"knowledge_{self.collection_name}"
if self.collection_name
else "knowledge"
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name, embedding_function=self.embedder
)
else:
raise Exception("Vector Database Client not initialized")
except Exception:
raise Exception("Failed to create or get collection")
except Exception:
logging.warning(
"Error initializing ChromaDB. Knowledge storage functionality will be limited."
)
self.app = None
self.collection = None
def reset(self):
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
try:
if not self.app:
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
shutil.rmtree(base_path)
self.app = None
self.collection = None
except (ImportError, NameError, AttributeError):
# Handle case when chromadb is not available
if os.path.exists(base_path):
shutil.rmtree(base_path)
self.app = None
self.collection = None
def save(
self,
documents: List[str],
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
):
if not self.collection:
# Just return silently if chromadb is not available
return
try:
# Create a dictionary to store unique documents
unique_docs = {}
# Generate IDs and create a mapping of id -> (document, metadata)
for idx, doc in enumerate(documents):
doc_id = hashlib.sha256(doc.encode("utf-8")).hexdigest()
doc_metadata = None
if metadata is not None:
if isinstance(metadata, list):
doc_metadata = metadata[idx]
else:
doc_metadata = metadata
unique_docs[doc_id] = (doc, doc_metadata)
# Prepare filtered lists for ChromaDB
filtered_docs = []
filtered_metadata = []
filtered_ids = []
# Build the filtered lists
for doc_id, (doc, meta) in unique_docs.items():
filtered_docs.append(doc)
filtered_metadata.append(meta)
filtered_ids.append(doc_id)
# If we have no metadata at all, set it to None
final_metadata = (
None if all(m is None for m in filtered_metadata) else filtered_metadata
)
self.collection.upsert(
documents=filtered_docs,
metadatas=final_metadata,
ids=filtered_ids,
)
except (ImportError, NameError, AttributeError) as e:
# Handle case when chromadb is not available
return
except Exception as e:
if "chromadb" in str(e.__class__):
# Handle chromadb-specific errors silently when chromadb might not be fully available
return
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
# Don't raise the exception, just log it and continue
return
def _create_default_embedding_function(self):
try:
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
logging.warning(
"OPENAI_API_KEY not found. Vector operations will be limited."
)
return None
return OpenAIEmbeddingFunction(
api_key=api_key, model_name="text-embedding-3-small"
)
except ImportError:
import logging
logging.warning(
"ChromaDB is not installed. Cannot create default embedding function. "
"Install with 'pip install crewai[chromadb]' to enable full functionality."
)
return None
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
"""Set the embedding configuration for the knowledge storage.
Args:
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
If None or empty, defaults to the default embedding function.
"""
try:
self.embedder = (
EmbeddingConfigurator().configure_embedder(embedder)
if embedder
else self._create_default_embedding_function()
)
except (ImportError, NameError, AttributeError):
# Handle case when chromadb is not available
self.embedder = None