mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
* fix: ensure config is not flattened, add tests * chore: refactor inits to model_validator * chore: refactor rag tool config parsing * chore: add initial docs * chore: add additional validation aliases for provider env vars * chore: add solid docs * chore: move imports to top * fix: revert circular import * fix: lazy import qdrant-client * fix: allow collection name config * chore: narrow model names for google * chore: update additional docs * chore: add backward compat on model name aliases * chore: add tests for config changes
116 lines
4.0 KiB
Python
116 lines
4.0 KiB
Python
from unittest.mock import MagicMock, Mock, patch
|
|
|
|
from crewai_tools.adapters.crewai_rag_adapter import CrewAIRagAdapter
|
|
from crewai_tools.tools.pdf_search_tool.pdf_search_tool import PDFSearchTool
|
|
|
|
|
|
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
|
|
def test_pdf_search_tool_with_azure_config_without_env_vars(
|
|
mock_create_client: Mock,
|
|
) -> None:
|
|
"""Test PDFSearchTool accepts Azure config without requiring env vars.
|
|
|
|
This verifies the fix for the reported issue where PDFSearchTool would
|
|
throw a validation error:
|
|
pydantic_core._pydantic_core.ValidationError: 1 validation error for PDFSearchTool
|
|
EMBEDDINGS_OPENAI_API_KEY
|
|
Field required [type=missing, input_value={}, input_type=dict]
|
|
"""
|
|
mock_embedding_func = MagicMock()
|
|
mock_embedding_func.return_value = [[0.1] * 1536]
|
|
|
|
mock_client = MagicMock()
|
|
mock_client.get_or_create_collection = MagicMock(return_value=None)
|
|
mock_create_client.return_value = mock_client
|
|
|
|
# Patch the embedding function builder to avoid actual API calls
|
|
with patch(
|
|
"crewai_tools.tools.rag.rag_tool.build_embedder",
|
|
return_value=mock_embedding_func,
|
|
):
|
|
# This is the exact config format from the bug report
|
|
config = {
|
|
"embedding_model": {
|
|
"provider": "azure",
|
|
"config": {
|
|
"model": "text-embedding-3-small",
|
|
"api_key": "test-litellm-api-key",
|
|
"api_base": "https://test.litellm.proxy/",
|
|
"api_version": "2024-02-01",
|
|
"api_type": "azure",
|
|
"deployment_id": "test-deployment",
|
|
},
|
|
}
|
|
}
|
|
|
|
# This should not raise a validation error about missing env vars
|
|
tool = PDFSearchTool(config=config)
|
|
|
|
assert tool.adapter is not None
|
|
assert isinstance(tool.adapter, CrewAIRagAdapter)
|
|
assert tool.name == "Search a PDF's content"
|
|
|
|
|
|
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
|
|
def test_pdf_search_tool_with_openai_config_without_env_vars(
|
|
mock_create_client: Mock,
|
|
) -> None:
|
|
"""Test PDFSearchTool accepts OpenAI config without requiring env vars."""
|
|
mock_embedding_func = MagicMock()
|
|
mock_embedding_func.return_value = [[0.1] * 1536]
|
|
|
|
mock_client = MagicMock()
|
|
mock_client.get_or_create_collection = MagicMock(return_value=None)
|
|
mock_create_client.return_value = mock_client
|
|
|
|
with patch(
|
|
"crewai_tools.tools.rag.rag_tool.build_embedder",
|
|
return_value=mock_embedding_func,
|
|
):
|
|
config = {
|
|
"embedding_model": {
|
|
"provider": "openai",
|
|
"config": {
|
|
"model": "text-embedding-3-small",
|
|
"api_key": "sk-test123",
|
|
},
|
|
}
|
|
}
|
|
|
|
tool = PDFSearchTool(config=config)
|
|
|
|
assert tool.adapter is not None
|
|
assert isinstance(tool.adapter, CrewAIRagAdapter)
|
|
|
|
|
|
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
|
|
def test_pdf_search_tool_with_vectordb_and_embedding_config(
|
|
mock_create_client: Mock,
|
|
) -> None:
|
|
"""Test PDFSearchTool with both vector DB and embedding config."""
|
|
mock_embedding_func = MagicMock()
|
|
mock_embedding_func.return_value = [[0.1] * 1536]
|
|
|
|
mock_client = MagicMock()
|
|
mock_client.get_or_create_collection = MagicMock(return_value=None)
|
|
mock_create_client.return_value = mock_client
|
|
|
|
with patch(
|
|
"crewai_tools.tools.rag.rag_tool.build_embedder",
|
|
return_value=mock_embedding_func,
|
|
):
|
|
config = {
|
|
"vectordb": {"provider": "chromadb", "config": {}},
|
|
"embedding_model": {
|
|
"provider": "openai",
|
|
"config": {
|
|
"model": "text-embedding-3-large",
|
|
"api_key": "sk-test-key",
|
|
},
|
|
},
|
|
}
|
|
|
|
tool = PDFSearchTool(config=config)
|
|
|
|
assert tool.adapter is not None
|
|
assert isinstance(tool.adapter, CrewAIRagAdapter) |