Files
crewAI/tests/utilities/test_converter.py
2025-05-12 13:31:07 +00:00

602 lines
18 KiB
Python

import json
from unittest.mock import MagicMock, Mock, patch
import pytest
from pydantic import BaseModel
from crewai.llm import LLM
from crewai.utilities.converter import (
Converter,
ConverterError,
convert_to_model,
convert_with_instructions,
create_converter,
generate_model_description,
get_conversion_instructions,
handle_partial_json,
validate_model,
)
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
@pytest.fixture(scope="module")
def vcr_config(request) -> dict:
return {
"cassette_library_dir": "tests/utilities/cassettes",
}
# Sample Pydantic models for testing
class EmailResponse(BaseModel):
previous_message_content: str
class EmailResponses(BaseModel):
responses: list[EmailResponse]
class SimpleModel(BaseModel):
name: str
age: int
class NestedModel(BaseModel):
id: int
data: SimpleModel
class Address(BaseModel):
street: str
city: str
zip_code: str
class Person(BaseModel):
name: str
age: int
address: Address
class CustomConverter(Converter):
pass
# Fixtures
@pytest.fixture
def mock_agent():
agent = Mock()
agent.function_calling_llm = None
agent.llm = Mock()
return agent
# Tests for convert_to_model
def test_convert_to_model_with_valid_json() -> None:
result = '{"name": "John", "age": 30}'
output = convert_to_model(result, SimpleModel, None, None)
assert isinstance(output, SimpleModel)
assert output.name == "John"
assert output.age == 30
def test_convert_to_model_with_invalid_json() -> None:
result = '{"name": "John", "age": "thirty"}'
with patch("crewai.utilities.converter.handle_partial_json") as mock_handle:
mock_handle.return_value = "Fallback result"
output = convert_to_model(result, SimpleModel, None, None)
assert output == "Fallback result"
def test_convert_to_model_with_no_model() -> None:
result = "Plain text"
output = convert_to_model(result, None, None, None)
assert output == "Plain text"
def test_convert_to_model_with_special_characters() -> None:
json_string_test = """
{
"responses": [
{
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
}
]
}
"""
output = convert_to_model(json_string_test, EmailResponses, None, None)
assert isinstance(output, EmailResponses)
assert len(output.responses) == 1
assert (
output.responses[0].previous_message_content
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
)
def test_convert_to_model_with_escaped_special_characters() -> None:
json_string_test = json.dumps(
{
"responses": [
{
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on",
},
],
},
)
output = convert_to_model(json_string_test, EmailResponses, None, None)
assert isinstance(output, EmailResponses)
assert len(output.responses) == 1
assert (
output.responses[0].previous_message_content
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
)
def test_convert_to_model_with_multiple_special_characters() -> None:
json_string_test = """
{
"responses": [
{
"previous_message_content": "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
}
]
}
"""
output = convert_to_model(json_string_test, EmailResponses, None, None)
assert isinstance(output, EmailResponses)
assert len(output.responses) == 1
assert (
output.responses[0].previous_message_content
== "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
)
# Tests for validate_model
def test_validate_model_pydantic_output() -> None:
result = '{"name": "Alice", "age": 25}'
output = validate_model(result, SimpleModel, False)
assert isinstance(output, SimpleModel)
assert output.name == "Alice"
assert output.age == 25
def test_validate_model_json_output() -> None:
result = '{"name": "Bob", "age": 40}'
output = validate_model(result, SimpleModel, True)
assert isinstance(output, dict)
assert output == {"name": "Bob", "age": 40}
# Tests for handle_partial_json
def test_handle_partial_json_with_valid_partial() -> None:
result = 'Some text {"name": "Charlie", "age": 35} more text'
output = handle_partial_json(result, SimpleModel, False, None)
assert isinstance(output, SimpleModel)
assert output.name == "Charlie"
assert output.age == 35
def test_handle_partial_json_with_invalid_partial(mock_agent) -> None:
result = "No valid JSON here"
with patch("crewai.utilities.converter.convert_with_instructions") as mock_convert:
mock_convert.return_value = "Converted result"
output = handle_partial_json(result, SimpleModel, False, mock_agent)
assert output == "Converted result"
# Tests for convert_with_instructions
@patch("crewai.utilities.converter.create_converter")
@patch("crewai.utilities.converter.get_conversion_instructions")
def test_convert_with_instructions_success(
mock_get_instructions, mock_create_converter, mock_agent,
) -> None:
mock_get_instructions.return_value = "Instructions"
mock_converter = Mock()
mock_converter.to_pydantic.return_value = SimpleModel(name="David", age=50)
mock_create_converter.return_value = mock_converter
result = "Some text to convert"
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
assert isinstance(output, SimpleModel)
assert output.name == "David"
assert output.age == 50
@patch("crewai.utilities.converter.create_converter")
@patch("crewai.utilities.converter.get_conversion_instructions")
def test_convert_with_instructions_failure(
mock_get_instructions, mock_create_converter, mock_agent,
) -> None:
mock_get_instructions.return_value = "Instructions"
mock_converter = Mock()
mock_converter.to_pydantic.return_value = ConverterError("Conversion failed")
mock_create_converter.return_value = mock_converter
result = "Some text to convert"
with patch("crewai.utilities.converter.Printer") as mock_printer:
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
assert output == result
mock_printer.return_value.print.assert_called_once()
# Tests for get_conversion_instructions
def test_get_conversion_instructions_gpt() -> None:
llm = LLM(model="gpt-4o-mini")
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
supports_function_calling.return_value = True
instructions = get_conversion_instructions(SimpleModel, llm)
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
expected_instructions = (
"Please convert the following text into valid JSON.\n\n"
"Output ONLY the valid JSON and nothing else.\n\n"
"The JSON must follow this schema exactly:\n```json\n"
f"{model_schema}\n```"
)
assert instructions == expected_instructions
def test_get_conversion_instructions_non_gpt() -> None:
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
with patch.object(LLM, "supports_function_calling", return_value=False):
instructions = get_conversion_instructions(SimpleModel, llm)
assert '"name": str' in instructions
assert '"age": int' in instructions
# Tests for is_gpt
def test_supports_function_calling_true() -> None:
llm = LLM(model="gpt-4o")
assert llm.supports_function_calling() is True
def test_supports_function_calling_false() -> None:
llm = LLM(model="non-existent-model")
assert llm.supports_function_calling() is False
def test_create_converter_with_mock_agent() -> None:
mock_agent = MagicMock()
mock_agent.get_output_converter.return_value = MagicMock(spec=Converter)
converter = create_converter(
agent=mock_agent,
llm=Mock(),
text="Sample",
model=SimpleModel,
instructions="Convert",
)
assert isinstance(converter, Converter)
mock_agent.get_output_converter.assert_called_once()
def test_create_converter_with_custom_converter() -> None:
converter = create_converter(
converter_cls=CustomConverter,
llm=LLM(model="gpt-4o-mini"),
text="Sample",
model=SimpleModel,
instructions="Convert",
)
assert isinstance(converter, CustomConverter)
def test_create_converter_fails_without_agent_or_converter_cls() -> None:
with pytest.raises(
ValueError, match="Either agent or converter_cls must be provided",
):
create_converter(
llm=Mock(), text="Sample", model=SimpleModel, instructions="Convert",
)
def test_generate_model_description_simple_model() -> None:
description = generate_model_description(SimpleModel)
expected_description = '{\n "name": str,\n "age": int\n}'
assert description == expected_description
def test_generate_model_description_nested_model() -> None:
description = generate_model_description(NestedModel)
expected_description = (
'{\n "id": int,\n "data": {\n "name": str,\n "age": int\n}\n}'
)
assert description == expected_description
def test_generate_model_description_optional_field() -> None:
class ModelWithOptionalField(BaseModel):
name: str | None
age: int
description = generate_model_description(ModelWithOptionalField)
expected_description = '{\n "name": Optional[str],\n "age": int\n}'
assert description == expected_description
def test_generate_model_description_list_field() -> None:
class ModelWithListField(BaseModel):
items: list[int]
description = generate_model_description(ModelWithListField)
expected_description = '{\n "items": List[int]\n}'
assert description == expected_description
def test_generate_model_description_dict_field() -> None:
class ModelWithDictField(BaseModel):
attributes: dict[str, int]
description = generate_model_description(ModelWithDictField)
expected_description = '{\n "attributes": Dict[str, int]\n}'
assert description == expected_description
@pytest.mark.vcr(filter_headers=["authorization"])
def test_convert_with_instructions() -> None:
llm = LLM(model="gpt-4o-mini")
sample_text = "Name: Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
# Act
output = converter.to_pydantic()
# Assert
assert isinstance(output, SimpleModel)
assert output.name == "Alice"
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_llama3_2_model() -> None:
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_llama3_1_model() -> None:
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_nested_model() -> None:
llm = LLM(model="gpt-4o-mini")
sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345"
instructions = get_conversion_instructions(Person, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=Person,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, Person)
assert output.name == "John Doe"
assert output.age == 30
assert isinstance(output.address, Address)
assert output.address.street == "123 Main St"
assert output.address.city == "Anytown"
assert output.address.zip_code == "12345"
# Tests for error handling
def test_converter_error_handling() -> None:
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = "Invalid JSON"
sample_text = "Name: Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
with pytest.raises(ConverterError) as exc_info:
converter.to_pydantic()
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
# Tests for retry logic
def test_converter_retry_logic() -> None:
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.side_effect = [
"Invalid JSON",
"Still invalid",
'{"name": "Retry Alice", "age": 30}',
]
sample_text = "Name: Retry Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
max_attempts=3,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Retry Alice"
assert output.age == 30
assert llm.call.call_count == 3
# Tests for optional fields
def test_converter_with_optional_fields() -> None:
class OptionalModel(BaseModel):
name: str
age: int | None
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
# Simulate the LLM's response with 'age' explicitly set to null
llm.call.return_value = '{"name": "Bob", "age": null}'
sample_text = "Name: Bob, age: None"
instructions = get_conversion_instructions(OptionalModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=OptionalModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, OptionalModel)
assert output.name == "Bob"
assert output.age is None
# Tests for list fields
def test_converter_with_list_field() -> None:
class ListModel(BaseModel):
items: list[int]
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"items": [1, 2, 3]}'
sample_text = "Items: 1, 2, 3"
instructions = get_conversion_instructions(ListModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=ListModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, ListModel)
assert output.items == [1, 2, 3]
# Tests for enums
from enum import Enum
def test_converter_with_enum() -> None:
class Color(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"
class EnumModel(BaseModel):
name: str
color: Color
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"name": "Alice", "color": "red"}'
sample_text = "Name: Alice, Color: Red"
instructions = get_conversion_instructions(EnumModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=EnumModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, EnumModel)
assert output.name == "Alice"
assert output.color == Color.RED
# Tests for ambiguous input
def test_converter_with_ambiguous_input() -> None:
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}'
sample_text = "Charlie is thirty years old"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
with pytest.raises(ConverterError) as exc_info:
converter.to_pydantic()
assert "failed to convert text into a pydantic model" in str(exc_info.value).lower()
# Tests for function calling support
def test_converter_with_function_calling() -> None:
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = True
instructor = Mock()
instructor.to_pydantic.return_value = SimpleModel(name="Eve", age=35)
converter = Converter(
llm=llm,
text="Name: Eve, Age: 35",
model=SimpleModel,
instructions="Convert this text.",
)
converter._create_instructor = Mock(return_value=instructor)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Eve"
assert output.age == 35
instructor.to_pydantic.assert_called_once()
def test_generate_model_description_union_field() -> None:
class UnionModel(BaseModel):
field: int | str | None
description = generate_model_description(UnionModel)
expected_description = '{\n "field": int | str | None\n}'
assert description == expected_description