Files
crewAI/tests/test_gemini_html_template.py

130 lines
5.2 KiB
Python

"""Test Gemini models with HTML templates."""
from unittest.mock import MagicMock, patch
import pytest
from crewai import Agent, Task
from crewai.llm import LLM
def test_gemini_empty_response_handling():
"""Test that empty responses from Gemini models are handled correctly."""
# Create a mock LLM instance
llm = LLM(model="gemini/gemini-pro")
# Create a mock response with empty content
mock_response = MagicMock()
mock_response.choices = [MagicMock()]
mock_response.choices[0].message = MagicMock()
mock_response.choices[0].message.content = ""
# Mock litellm.completion to return our mock response
with patch('litellm.completion', return_value=mock_response):
# Call the non-streaming response handler directly
result = llm._handle_non_streaming_response({"model": "gemini/gemini-pro"})
# Verify that our fix works - empty string should be replaced with placeholder
assert "Response processed successfully" in result
assert "HTML template" in result
def test_openrouter_gemini_empty_response_handling():
"""Test that empty responses from OpenRouter with Gemini models are handled correctly."""
# Create a mock LLM instance with OpenRouter base URL
llm = LLM(
model="openrouter/google/gemini-pro",
base_url="https://openrouter.ai/api/v1"
)
# Create a mock response with empty content
mock_response = MagicMock()
mock_response.choices = [MagicMock()]
mock_response.choices[0].message = MagicMock()
mock_response.choices[0].message.content = ""
# Mock litellm.completion to return our mock response
with patch('litellm.completion', return_value=mock_response):
# Call the non-streaming response handler directly
result = llm._handle_non_streaming_response({"model": "openrouter/google/gemini-pro"})
# Verify that our fix works - empty string should be replaced with placeholder
assert "Response processed successfully" in result
assert "HTML template" in result
def test_gemini_none_response_handling():
"""Test that None responses are properly handled."""
llm = LLM(model="gemini/gemini-pro")
# Create a mock response with None content
mock_response = MagicMock()
mock_response.choices = [MagicMock()]
mock_response.choices[0].message = MagicMock()
mock_response.choices[0].message.content = None
# Mock litellm.completion to return our mock response
with patch('litellm.completion', return_value=mock_response):
# Call the non-streaming response handler directly
# None content should be converted to empty string and then handled
result = llm._handle_non_streaming_response({"model": "gemini/gemini-pro"})
# Verify that our fix works - None should be converted to empty string
# and then handled as an empty string for Gemini models
assert "Response processed successfully" in result
assert "HTML template" in result
@pytest.mark.parametrize("model_name,base_url", [
("gemini/gemini-pro", None),
("gemini-pro", None),
("google/gemini-pro", None),
("openrouter/google/gemini-pro", "https://openrouter.ai/api/v1"),
("openrouter/gemini-pro", "https://openrouter.ai/api/v1"),
])
def test_various_gemini_configurations(model_name, base_url):
"""Test different Gemini model configurations with the _is_gemini_model helper."""
# Create a mock LLM instance with the specified model and base URL
llm = LLM(model=model_name, base_url=base_url)
# Verify that _is_gemini_model correctly identifies all these configurations
assert llm._is_gemini_model() is True
# Create a mock response with empty content
mock_response = MagicMock()
mock_response.choices = [MagicMock()]
mock_response.choices[0].message = MagicMock()
mock_response.choices[0].message.content = ""
# Mock litellm.completion to return our mock response
with patch('litellm.completion', return_value=mock_response):
# Call the non-streaming response handler directly
result = llm._handle_non_streaming_response({"model": model_name})
# Verify that our fix works for all Gemini configurations
assert "Response processed successfully" in result
assert "HTML template" in result
def test_non_gemini_model():
"""Test that non-Gemini models don't get special handling for empty responses."""
# Create a mock LLM instance with a non-Gemini model
llm = LLM(model="gpt-4")
# Verify that _is_gemini_model correctly identifies this as not a Gemini model
assert llm._is_gemini_model() is False
# Create a mock response with empty content
mock_response = MagicMock()
mock_response.choices = [MagicMock()]
mock_response.choices[0].message = MagicMock()
mock_response.choices[0].message.content = ""
# Mock litellm.completion to return our mock response
with patch('litellm.completion', return_value=mock_response):
# Call the non-streaming response handler directly
result = llm._handle_non_streaming_response({"model": "gpt-4"})
# Verify that non-Gemini models just return the empty string
assert result == ""