mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-03 21:28:29 +00:00
71 lines
2.1 KiB
Plaintext
71 lines
2.1 KiB
Plaintext
---
|
||
title: Using LlamaIndex Tools
|
||
description: Learn how to integrate LlamaIndex tools with CrewAI agents to enhance search-based queries and more.
|
||
icon: toolbox
|
||
---
|
||
|
||
## Using LlamaIndex Tools
|
||
|
||
<Info>
|
||
CrewAI seamlessly integrates with LlamaIndex’s comprehensive toolkit for RAG (Retrieval-Augmented Generation) and agentic pipelines, enabling advanced search-based queries and more.
|
||
</Info>
|
||
|
||
Here are the available built-in tools offered by LlamaIndex.
|
||
|
||
```python Code
|
||
from crewai import Agent
|
||
from crewai_tools import LlamaIndexTool
|
||
|
||
# Example 1: Initialize from FunctionTool
|
||
from llama_index.core.tools import FunctionTool
|
||
|
||
your_python_function = lambda ...: ...
|
||
og_tool = FunctionTool.from_defaults(
|
||
your_python_function,
|
||
name="<name>",
|
||
description='<description>'
|
||
)
|
||
tool = LlamaIndexTool.from_tool(og_tool)
|
||
|
||
# Example 2: Initialize from LlamaHub Tools
|
||
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
|
||
wolfram_spec = WolframAlphaToolSpec(app_id="<app_id>")
|
||
wolfram_tools = wolfram_spec.to_tool_list()
|
||
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
|
||
|
||
# Example 3: Initialize Tool from a LlamaIndex Query Engine
|
||
query_engine = index.as_query_engine()
|
||
query_tool = LlamaIndexTool.from_query_engine(
|
||
query_engine,
|
||
name="Uber 2019 10K Query Tool",
|
||
description="Use this tool to lookup the 2019 Uber 10K Annual Report"
|
||
)
|
||
|
||
# Create and assign the tools to an agent
|
||
agent = Agent(
|
||
role='Research Analyst',
|
||
goal='Provide up-to-date market analysis',
|
||
backstory='An expert analyst with a keen eye for market trends.',
|
||
tools=[tool, *tools, query_tool]
|
||
)
|
||
|
||
# rest of the code ...
|
||
```
|
||
|
||
## Steps to Get Started
|
||
|
||
To effectively use the LlamaIndexTool, follow these steps:
|
||
|
||
<Steps>
|
||
<Step title="Package Installation">
|
||
Make sure that `crewai[tools]` package is installed in your Python environment:
|
||
<CodeGroup>
|
||
```shell Terminal
|
||
pip install 'crewai[tools]'
|
||
```
|
||
</CodeGroup>
|
||
</Step>
|
||
<Step title="Install and Use LlamaIndex">
|
||
Follow the LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
|
||
</Step>
|
||
</Steps> |