Files
crewAI/tests/agent_test.py
Brandon Hancock (bhancock_ai) 4bcc3b532d Trying out timeouts (#1840)
* Make tests green again

* Add Git validations for publishing tools  (#1381)

This commit prevents tools from being published if the underlying Git
repository is unsynced with origin.

* fix: JSON encoding date objects (#1374)

* Update README  (#1376)

* Change all instaces of crewAI to CrewAI and fix installation step

* Update the  example to use YAML format

* Update  to come after setup and edits

* Remove double tool instance

* docs: correct miswritten command name (#1365)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Add `--force` option to `crewai tool publish` (#1383)

This commit adds an option to bypass Git remote validations when
publishing tools.

* add plotting to flows documentation (#1394)

* Brandon/cre 288 add telemetry to flows (#1391)

* Telemetry for flows

* store node names

* Brandon/cre 291 flow improvements (#1390)

* Implement joao feedback

* update colors for crew nodes

* clean up

* more linting clean up

* round legend corners

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* quick fixes (#1385)

* quick fixes

* add generic name

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* reduce import time by 6x (#1396)

* reduce import by 6x

* fix linting

* Added version details (#1402)

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Update twitter logo to x-twiiter (#1403)

* fix task cloning error (#1416)

* Migrate docs from MkDocs to Mintlify (#1423)

* add new mintlify docs

* add favicon.svg

* minor edits

* add github stats

* Fix/logger - fix #1412 (#1413)

* improved logger

* log file looks better

* better lines written to log file

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fixing tests

* preparing new version

* updating init

* Preparing new version

* Trying to fix linting and other warnings (#1417)

* Trying to fix linting

* fixing more type issues

* clean up ci

* more ci fixes

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* Feat/poetry to uv migration (#1406)

* feat: Start migrating to UV

* feat: add uv to flows

* feat: update docs on Poetry -> uv

* feat: update docs and uv.locl

* feat: update tests and github CI

* feat: run ruff format

* feat: update typechecking

* feat: fix type checking

* feat: update python version

* feat: type checking gic

* feat: adapt uv command to run the tool repo

* Adapt tool build command to uv

* feat: update logic to let only projects with crew to be deployed

* feat: add uv to tools

* fix; tests

* fix: remove breakpoint

* fix :test

* feat: add crewai update to migrate from poetry to uv

* fix: tests

* feat: add validation for ˆ character on pyproject

* feat: add run_crew to pyproject if doesnt exist

* feat: add validation for poetry migration

* fix: warning

---------

Co-authored-by: Vinicius Brasil <vini@hey.com>

* fix: training issue (#1433)

* fix: training issue

* fix: output from crew

* fix: message

* Use a slice for the manager request. Make the task use the agent i18n settings (#1446)

* Fix Cache Typo in Documentation (#1441)

* Correct the role for the message being added to the messages list (#1438)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* fix typo in template file (#1432)

* Adapt Tools CLI to uv (#1455)

* Adapt Tools CLI to UV

* Fix failing test

* use the same i18n as the agent for tool usage (#1440)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Upgrade docs to mirror change from `Poetry` to `UV` (#1451)

* Update docs to use  instead of

* Add Flows YouTube tutorial & link images

* feat: ADd warning from poetry -> uv (#1458)

* feat/updated CLI to allow for model selection & submitting API keys (#1430)

* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* Fix incorrect parameter name in Vision tool docs page (#1461)

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Feat/memory base (#1444)

* byom - short/entity memory

* better

* rm uneeded

* fix text

* use context

* rm dep and sync

* type check fix

* fixed test using new cassete

* fixing types

* fixed types

* fix types

* fixed types

* fixing types

* fix type

* cassette update

* just mock the return of short term mem

* remove print

* try catch block

* added docs

* dding error handling here

* preparing new version

* fixing annotations

* fix tasks and agents ordering

* Avoiding exceptions

* feat: add poetry.lock to uv migration (#1468)

* fix tool calling issue (#1467)

* fix tool calling issue

* Update tool type check

* Drop print

* cutting new version

* new verison

* Adapt `crewai tool install <tool>` to uv (#1481)

This commit updates the tool install comamnd to uv's new custom index
feature.

Related: https://github.com/astral-sh/uv/pull/7746/

* fix(docs): typo (#1470)

* drop unneccesary tests (#1484)

* drop uneccesary tests

* fix linting

* simplify flow (#1482)

* simplify flow

* propogate changes

* Update docs and scripts

* Template fix

* make flow kickoff sync

* Clean up docs

* Add Cerebras LLM example configuration to LLM docs (#1488)

* ensure original embedding config works (#1476)

* ensure original embedding config works

* some fixes

* raise error on unsupported provider

* WIP: brandons notes

* fixes

* rm prints

* fixed docs

* fixed run types

* updates to add more docs and correct imports with huggingface embedding server enabled

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* use copy to split testing and training on crews (#1491)

* use copy to split testing and training on crews

* make tests handle new copy functionality on train and test

* fix last test

* fix test

* preparing new verison

* fix/fixed missing API prompt + CLI docs update (#1464)

* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

* Added docs for new CLI provider + fixed missing API prompt

* Minor doc updates

* allow user to bypass api key entry + incorect number selected logic + ruff formatting

* ruff updates

* Fix spelling mistake

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* chore(readme-fix): fixing step for 'running tests' in the contribution section (#1490)

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* support unsafe code execution. add in docker install and running checks. (#1496)

* support unsafe code execution. add in docker install and running checks.

* Update return type

* Fix memory imports for embedding functions (#1497)

* updating crewai version

* new version

* new version

* update plot command (#1504)

* feat: add tomli so we can support 3.10 (#1506)

* feat: add tomli so we can support 3.10

* feat: add validation for poetry data

* Forward install command options to `uv sync` (#1510)

Allow passing additional options from `crewai install` directly to
`uv sync`. This enables commands like `crewai install --locked` to work
as expected by forwarding all flags and options to the underlying uv
command.

* improve tool text description and args (#1512)

* improve tool text descriptoin and args

* fix lint

* Drop print

* add back in docstring

* Improve tooling docs

* Update flow docs to talk about self evaluation example

* Update flow docs to talk about self evaluation example

* Update flows.mdx - Fix link

* Update flows cli to allow you to easily add additional crews to a flow (#1525)

* Update flows cli to allow you to easily add additional crews to a flow

* fix failing test

* adding more error logs to test thats failing

* try again

* Bugfix/flows with multiple starts plus ands breaking (#1531)

* bugfix/flows-with-multiple-starts-plus-ands-breaking

* fix user found issue

* remove prints

* prepare new version

* Added security.md file (#1533)

* Disable telemetry explicitly (#1536)

* Disable telemetry explicitly

* fix linting

* revert parts to og

* Enhance log storage to support more data types (#1530)

* Add llm providers accordion group (#1534)

* add llm providers accordion group

* fix numbering

* Replace .netrc with uv environment variables (#1541)

This commit replaces .netrc with uv environment variables for installing
tools from private repositories. To store credentials, I created a new
and reusable settings file for the CLI in
`$HOME/.config/crewai/settings.json`.

The issue with .netrc files is that they are applied system-wide and are
scoped by hostname, meaning we can't differentiate tool repositories
requests from regular requests to CrewAI's API.

* refactor: Move BaseTool to main package and centralize tool description generation (#1514)

* move base_tool to main package and consolidate tool desscription generation

* update import path

* update tests

* update doc

* add base_tool test

* migrate agent delegation tools to use BaseTool

* update tests

* update import path for tool

* fix lint

* update param signature

* add from_langchain to BaseTool for backwards support of langchain tools

* fix the case where StructuredTool doesn't have func

---------

Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Update docs  (#1550)

* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* Feat/ibm memory (#1549)

* Everything looks like its working. Waiting for lorenze review.

* Update docs as well.

* clean up for PR

* add inputs to flows (#1553)

* add inputs to flows

* fix flows lint

* Increase providers fetching timeout

* Raise an error if an LLM doesnt return a response (#1548)

* docs update (#1558)

* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* update crewai enterprise link in docs

* Feat/watson in cli (#1535)

* getting cli and .env to work together for different models

* support new models

* clean up prints

* Add support for cerebras

* Fix watson keys

* Fix flows to support cycles and added in test (#1556)

* fix missing config (#1557)

* making sure we don't check for agents that were not used in the crew

* preparing new version

* updating LLM docs

* preparing new version

* curring new version

* preparing new version

* preparing new version

* add missing init

* fix LiteLLM callback replacement

* fix test_agent_usage_metrics_are_captured_for_hierarchical_process

* removing prints

* fix: Step callback issue (#1595)

* fix: Step callback issue

* fix: Add empty thought since its required

* Cached prompt tokens on usage metrics

* do not include cached on total

* Fix crew_train_success test

* feat: Reduce level for Bandit and fix code to adapt (#1604)

* Add support for retrieving user preferences and memories using Mem0 (#1209)

* Integrate Mem0

* Update src/crewai/memory/contextual/contextual_memory.py

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* pending commit for _fetch_user_memories

* update poetry.lock

* fixes mypy issues

* fix mypy checks

* New fixes for user_id

* remove memory_provider

* handle memory_provider

* checks for memory_config

* add mem0 to dependency

* Update pyproject.toml

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* update docs

* update doc

* bump mem0 version

* fix api error msg and mypy issue

* mypy fix

* resolve comments

* fix memory usage without mem0

* mem0 version bump

* lazy import mem0

---------

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* upgrade chroma and adjust embedder function generator (#1607)

* upgrade chroma and adjust embedder function generator

* >= version

* linted

* preparing enw version

* adding before and after crew

* Update CLI Watson supported models + docs (#1628)

* docs: add gh_token documentation to GithubSearchTool

* Move kickoff callbacks to crew's domain

* Cassettes

* Make mypy happy

* Knowledge (#1567)

* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>

* Updated README.md, fix typo(s) (#1637)

* Update Perplexity example in documentation (#1623)

* Fix threading

* preparing new version

* Log in to Tool Repository on `crewai login` (#1650)

This commit adds an extra step to `crewai login` to ensure users also
log in to Tool Repository, that is, exchanging their Auth0 tokens for a
Tool Repository username and password to be used by UV downloads and API
tool uploads.

* add knowledge to mint.json

* Improve typed task outputs (#1651)

* V1 working

* clean up imports and prints

* more clean up and add tests

* fixing tests

* fix test

* fix linting

* Fix tests

* Fix linting

* add doc string as requested by eduardo

* Update Github actions (#1639)

* actions/checkout@v4

* actions/cache@v4

* actions/setup-python@v5

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* update (#1638)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* fix spelling issue found by @Jacques-Murray (#1660)

* Update readme for running mypy (#1614)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Feat/remove langchain (#1654)

* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args

* Feat/remove langchain (#1668)

* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args

* fix tool calling for langchain tools

* doc strings

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* added knowledge to agent level (#1655)

* added knowledge to agent level

* linted

* added doc

* added from suggestions

* added test

* fixes from discussion

* fix docs

* fix test

* rm cassette for knowledge_sources test as its a mock and update agent doc string

* fix test

* rm unused

* linted

* Update Agents docs to include two approaches for creating an agent: with and without YAML configuration

* Documentation Improvements: LLM Configuration and Usage (#1684)

* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* Fixes issues with result as answer not properly exiting LLM loop (#1689)

* v1 of fix implemented. Need to confirm with tokens.

* remove print statements

* preparing new version

* fix missing code in flows docs (#1690)

* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* docs: add code snippet to Getting Started section in flows.mdx

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Update reset memories command based on the SDK (#1688)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Update using langchain tools docs (#1664)

* Update example of how to use LangChain tools with correct syntax

* Use .env

* Add  Code back

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* [FEATURE] Support for custom path in RAGStorage (#1659)

* added path to RAGStorage

* added path to short term and entity memory

* add path for long_term_storage for completeness

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* [Doc]: Add documenation for openlit observability (#1612)

* Create openlit-observability.mdx

* Update doc with images and steps

* Update mkdocs.yml and add OpenLIT guide link

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix indentation in llm-connections.mdx code block (#1573)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Knowledge project directory standard (#1691)

* Knowledge project directory standard

* fixed types

* comment fix

* made base file knowledge source an abstract class

* cleaner validator on model_post_init

* fix type checker

* cleaner refactor

* better template

* Update README.md (#1694)

Corrected the statement which says users can not disable telemetry, but now users can disable by setting the environment variable OTEL_SDK_DISABLED to true.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Talk about getting structured consistent outputs with tasks.

* remove all references to pipeline and pipeline router (#1661)

* remove all references to pipeline and router

* fix linting

* drop poetry.lock

* docs: add nvidia as provider (#1632)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* add knowledge demo + improve knowledge docs (#1706)

* Brandon/cre 509 hitl multiple rounds of followup (#1702)

* v1 of HITL working

* Drop print statements

* HITL code more robust. Still needs to be refactored.

* refactor and more clear messages

* Fix type issue

* fix tests

* Fix test again

* Drop extra print

* New docs about yaml crew with decorators. Simplify template crew with… (#1701)

* New docs about yaml crew with decorators. Simplify template crew with links

* Fix spelling issues.

* updating tools

* curting new verson

* Incorporate Stale PRs that have feedback (#1693)

* incorporate #1683

* add in --version flag to cli. closes #1679.

* Fix env issue

* Add in suggestions from @caike to make sure ragstorage doesnt exceed os file limit. Also, included additional checks to support windows.

* remove poetry.lock as pointed out by @sanders41 in #1574.

* Incorporate feedback from crewai reviewer

* Incorporate @lorenzejay feedback

* drop metadata requirement (#1712)

* drop metadata requirement

* fix linting

* Update docs for new knowledge

* more linting

* more linting

* make save_documents private

* update docs to the new way we use knowledge and include clearing memory

* add support for langfuse with litellm (#1721)

* docs: Add quotes to agentops installing command (#1729)

* docs: Add quotes to agentops installing command

* feat: Add ContextualMemory to __init__

* feat: remove import due to circular improt

* feat: update tasks config main template typos

* Fixed output_file not respecting system path (#1726)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* fix:typo error (#1732)

* Update crew_agent_executor.py

typo error

* Update en.json

typo error

* Fix Knowledge docs Spaceflight News API dead link

* call storage.search in user context search instead of memory.search (#1692)

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* Add doc structured tool (#1713)

* Add doc structured tool

* Fix example

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* _execute_tool_and_check_finality 结果给回调参数,这样就可以提前拿到结果信息,去做数据解析判断做预判 (#1716)

Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* format bullet points (#1734)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Add missing @functools.wraps when wrapping functions and preserve wrapped class name in @CrewBase. (#1560)

* Update annotations.py

* Update utils.py

* Update crew_base.py

* Update utils.py

* Update crew_base.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix disk I/O error when resetting short-term memory. (#1724)

* Fix disk I/O error when resetting short-term memory.

Reset chromadb client and nullifies references before
removing directory.

* Nit for clarity

* did the same for knowledge_storage

* cleanup

* cleanup order

* Cleanup after the rm of the directories

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>

* restrict python version compatibility (#1731)

* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* Bugfix/restrict python version compatibility (#1736)

* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline

* Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711)

* copy googles changes. Fix tests. Improve LLM file (#1737)

* copy googles changes. Fix tests. Improve LLM file

* Fix type issue

* fix:typo error (#1738)

* Update base_agent_tools.py

typo error

* Update main.py

typo error

* Update base_file_knowledge_source.py

typo error

* Update test_main.py

typo error

* Update en.json

* Update prompts.json

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Remove manager_callbacks reference (#1741)

* include event emitter in flows (#1740)

* include event emitter in flows

* Clean up

* Fix linter

* sort imports with isort rules by ruff linter (#1730)

* sort imports

* update

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* Added is_auto_end flag in agentops.end session in crew.py (#1320)

When using agentops, we have the option to pass the `skip_auto_end_session` parameter, which is supposed to not end the session if the `end_session` function is called by Crew.

Now the way it works is, the `agentops.end_session` accepts `is_auto_end` flag and crewai should have passed it as `True` (its `False` by default). 

I have changed the code to pass is_auto_end=True

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* NVIDIA Provider : UI changes (#1746)

* docs: add nvidia as provider

* nvidia ui docs changes

* add note for updated list

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix small typo in sample tool (#1747)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Feature/add workflow permissions (#1749)

* fix: Call ChromaDB reset before removing storage directory to fix disk I/O errors

* feat: add workflow permissions to stale.yml

* revert rag_storage.py changes

* revert rag_storage.py changes

---------

Co-authored-by: Matt B <mattb@Matts-MacBook-Pro.local>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* remove pkg_resources which was causing issues (#1751)

* apply agent ops changes and resolve merge conflicts (#1748)

* apply agent ops changes and resolve merge conflicts

* Trying to fix tests

* add back in vcr

* update tools

* remove pkg_resources which was causing issues

* Fix tests

* experimenting to see if unique content is an issue with knowledge

* experimenting to see if unique content is an issue with knowledge

* update chromadb which seems to have issues with upsert

* generate new yaml for failing test

* Investigating upsert

* Drop patch

* Update casettes

* Fix duplicate document issue

* more fixes

* add back in vcr

* new cassette for test

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>

* drop print (#1755)

* Fix: CrewJSONEncoder now accepts enums (#1752)

* bugfix: CrewJSONEncoder now accepts enums

* sort imports

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix bool and null handling (#1771)

* include 12 but not 13

* change to <13 instead of <=12

* Gemini 2.0 (#1773)

* Update llms.mdx (Gemini 2.0)

- Add Gemini 2.0 flash to Gemini table.
- Add link to 2 hosting paths for Gemini in Tip.
- Change to lower case model slugs vs names, user convenience.
- Add https://artificialanalysis.ai/ as alternate leaderboard.
- Move Gemma to "other" tab.

* Update llm.py (gemini 2.0)

Add setting for Gemini 2.0 context window to llm.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Remove relative import in flow `main.py` template (#1782)

* Add `tool.crewai.type` pyproject attribute in templates (#1789)

* Correcting a small grammatical issue that was bugging me: from _satisfy the expect criteria_ to _satisfies the expected criteria_ (#1783)

Signed-off-by: PJ Hagerty <pjhagerty@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* feat: Add task guardrails feature (#1742)

* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in task guardrails files

Co-Authored-By: Joe Moura <joao@crewai.com>

* fixing docs

* Fixing guardarils implementation

* docs: Enhance guardrail validator docstring with runtime validation rationale

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* feat: Add interpolate_only method and improve error handling (#1791)

* Fixed output_file not respecting system path

* Fixed yaml config is not escaped properly for output requirements

* feat: Add interpolate_only method and improve error handling

- Add interpolate_only method for string interpolation while preserving JSON structure
- Add comprehensive test coverage for interpolate_only
- Add proper type annotation for logger using ClassVar
- Improve error handling and documentation for _save_file method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports to fix lint issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Reorganize imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Consolidate imports and fix formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Apply ruff automatic import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Frieda Huang <124417784+frieda-huang@users.noreply.github.com>
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* Feat/docling-support (#1763)

* added tool for docling support

* docling support installation

* use file_paths instead of file_path

* fix import

* organized imports

* run_type docs

* needs to be list

* fixed logic

* logged but file_path is backwards compatible

* use file_paths instead of file_path 2

* added test for multiple sources for file_paths

* fix run-types

* enabling local files to work and type cleanup

* linted

* fix test and types

* fixed run types

* fix types

* renamed to CrewDoclingSource

* linted

* added docs

* resolve conflicts

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* removed some redundancies (#1796)

* removed some redundancies

* cleanup

* Feat/joao flow improvement requests (#1795)

* Add in or and and in router

* In the middle of improving plotting

* final plot changes

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Adding Multimodal Abilities to Crew (#1805)

* initial fix on delegation tools

* fixing tests for delegations and coding

* Refactor prepare tool and adding initial add images logic

* supporting image tool

* fixing linter

* fix linter

* Making sure multimodal feature support i18n

* fix linter and types

* mixxing translations

* fix types and linter

* Revert "fixing linter"

This reverts commit ef323e3487e62ee4f5bce7f86378068a5ac77e16.

* fix linters

* test

* fix

* fix

* fix linter

* fix

* ignore

* type improvements

* chore: removing crewai-tools from dev-dependencies (#1760)

As mentioned in issue #1759, listing crewai-tools as dev-dependencies makes pip install it a required dependency, and not an optional

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* docs: add guide for multimodal agents (#1807)

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* Portkey Integration with CrewAI (#1233)

* Create Portkey-Observability-and-Guardrails.md

* crewAI update with new changes

* small change

---------

Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fix: Change storage initialization to None for KnowledgeStorage (#1804)

* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fix: handle optional storage with null checks (#1808)

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* docs: update README to highlight Flows (#1809)

* docs: highlight Flows feature in README

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance README with LangGraph comparison and flows-crews synergy

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: replace initial Flow example with advanced Flow+Crew example; enhance LangGraph comparison

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: incorporate key terms and enhance feature descriptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: refine technical language, enhance feature descriptions, fix string interpolation

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update README with performance metrics, feature enhancements, and course links

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update LangGraph comparison with paragraph and P.S. section

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* Update README.md

* docs: add agent-specific knowledge documentation and examples (#1811)

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* fixing file paths for knowledge source

* Fix interpolation for output_file in Task (#1803) (#1814)

* fix: interpolate output_file attribute from YAML

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add security validation for output_file paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add _original_output_file private attribute to fix type-checker error

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: update interpolate_only to handle None inputs and remove duplicate attribute

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: improve output_file validation and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add end-to-end tests for output_file functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* fix(manager_llm): handle coworker role name case/whitespace properly (#1820)

* fix(manager_llm): handle coworker role name case/whitespace properly

- Add .strip() to agent name and role comparisons in base_agent_tools.py
- Add test case for varied role name cases and whitespace
- Fix issue #1503 with manager LLM delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve error handling and add debug logging

- Add debug logging for better observability
- Add sanitize_agent_name helper method
- Enhance error messages with more context
- Add parameterized tests for edge cases:
  - Embedded quotes
  - Trailing newlines
  - Multiple whitespace
  - Case variations
  - None values
- Improve error handling with specific exceptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve whitespace normalization in role name matching

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): add error message template for agent tool execution errors

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in test_manager_llm_delegation.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* fix: add tiktoken as explicit dependency and document Rust requirement (#1826)

* feat: add tiktoken as explicit dependency and document Rust requirement

- Add tiktoken>=0.8.0 as explicit dependency to ensure pre-built wheels are used
- Document Rust compiler requirement as fallback in README.md
- Addresses issue #1824 tiktoken build failure

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: adjust tiktoken version to ~=0.7.0 for dependency compatibility

- Update tiktoken dependency to ~=0.7.0 to resolve conflict with embedchain
- Maintain compatibility with crewai-tools dependency chain
- Addresses CI build failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add troubleshooting section and make tiktoken optional

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update README.md

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Docstring, Error Handling, and Type Hints Improvements (#1828)

* docs: add comprehensive docstrings to Flow class and methods

- Added NumPy-style docstrings to all decorator functions
- Added detailed documentation to Flow class methods
- Included parameter types, return types, and examples
- Enhanced documentation clarity and completeness

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add secure path handling utilities

- Add path_utils.py with safe path handling functions
- Implement path validation and security checks
- Integrate secure path handling in flow_visualizer.py
- Add path validation in html_template_handler.py
- Add comprehensive error handling for path operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add comprehensive docstrings and type hints to flow utils (#1819)

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations and fix import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations to flow utils and visualization utils

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: resolve import sorting and type annotation issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: properly initialize and update edge_smooth variable

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* feat: add docstring (#1819)

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fix: Include agent knowledge in planning process (#1818)

* test: Add test demonstrating knowledge not included in planning process

Issue #1703: Add test to verify that agent knowledge sources are not currently
included in the planning process. This test will help validate the fix once
implemented.

- Creates agent with knowledge sources
- Verifies knowledge context missing from planning
- Checks other expected components are present

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Include agent knowledge in planning process

Issue #1703: Integrate agent knowledge sources into planning summaries
- Add agent_knowledge field to task summaries in planning_handler
- Update test to verify knowledge inclusion
- Ensure knowledge context is available during planning phase

The planning agent now has access to agent knowledge when creating
task execution plans, allowing for better informed planning decisions.

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_knowledge_planning.py

- Reorganize imports according to ruff linting rules
- Fix I001 linting error

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Update task summary assertions to include knowledge field

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update ChromaDB mock path and fix knowledge string formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve knowledge integration in planning process with error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update task summary format for empty tools and knowledge

- Change empty tools message to 'agent has no tools'
- Remove agent_knowledge field when empty
- Update test assertions to match new format
- Improve test messages for clarity

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools and knowledge in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update knowledge field formatting in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting order in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Add ChromaDB mocking to test_create_tasks_summary_with_knowledge_and_tools

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Suppressed userWarnings from litellm pydantic issues (#1833)

* Suppressed userWarnings from litellm pydantic issues

* change litellm version

* Fix failling ollama tasks

* Trying out timeouts

* Trying out timeouts

* trying next crew_test timeout

* trying next crew_test timeout

* timeout in crew_tests

* timeout in crew_tests

* more timeouts

* more timeouts

* crew_test changes werent applied

* crew_test changes werent applied

* revert uv.lock

* revert uv.lock

* add back in crewai tool dependencies and drop litellm version

* add back in crewai tool dependencies and drop litellm version

* tests should work now

* tests should work now

* more test changes

* more test changes

* Reverting uv.lock and pyproject

* Reverting uv.lock and pyproject

* Update llama3 cassettes

* Update llama3 cassettes

* sync packages with uv.lock

* sync packages with uv.lock

* more test fixes

* fix tets

* drop large file

* final clean up

* drop record new episodes

---------

Signed-off-by: PJ Hagerty <pjhagerty@gmail.com>
Co-authored-by: Thiago Moretto <168731+thiagomoretto@users.noreply.github.com>
Co-authored-by: Thiago Moretto <thiago.moretto@gmail.com>
Co-authored-by: Vini Brasil <vini@hey.com>
Co-authored-by: Guilherme de Amorim <ggimenezjr@gmail.com>
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
Co-authored-by: Eren Küçüker <66262604+erenkucuker@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Akesh kumar <155313882+akesh-0909@users.noreply.github.com>
Co-authored-by: Lennex Zinyando <brizdigital@gmail.com>
Co-authored-by: Shahar Yair <shya95@gmail.com>
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
Co-authored-by: Stephen Hankinson <shankinson@gmail.com>
Co-authored-by: Muhammad Noman Fareed <60171953+shnoman97@users.noreply.github.com>
Co-authored-by: dbubel <50341559+dbubel@users.noreply.github.com>
Co-authored-by: Rip&Tear <84775494+theCyberTech@users.noreply.github.com>
Co-authored-by: Rok Benko <115651717+rokbenko@users.noreply.github.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
Co-authored-by: Sam <sammcj@users.noreply.github.com>
Co-authored-by: Maicon Peixinho <maiconpeixinho@icloud.com>
Co-authored-by: Robin Wang <6220861+MottoX@users.noreply.github.com>
Co-authored-by: C0deZ <c0dezlee@gmail.com>
Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Gui Vieira <guilherme_vieira@me.com>
Co-authored-by: Dev Khant <devkhant24@gmail.com>
Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Co-authored-by: Gui Vieira <gui@crewai.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Bob Conan <sufssl03@gmail.com>
Co-authored-by: Andy Bromberg <abromberg@users.noreply.github.com>
Co-authored-by: Bowen Liang <bowenliang@apache.org>
Co-authored-by: Ivan Peevski <133036+ipeevski@users.noreply.github.com>
Co-authored-by: Rok Benko <ksjeno@gmail.com>
Co-authored-by: Javier Saldaña <cjaviersaldana@outlook.com>
Co-authored-by: Ola Hungerford <olahungerford@gmail.com>
Co-authored-by: Tom Mahler, PhD <tom@mahler.tech>
Co-authored-by: Patcher <patcher@openlit.io>
Co-authored-by: Feynman Liang <feynman.liang@gmail.com>
Co-authored-by: Stephen <stephen-talari@users.noreply.github.com>
Co-authored-by: Rashmi Pawar <168514198+raspawar@users.noreply.github.com>
Co-authored-by: Frieda Huang <124417784+frieda-huang@users.noreply.github.com>
Co-authored-by: Archkon <180910180+Archkon@users.noreply.github.com>
Co-authored-by: Aviral Jain <avi.aviral140@gmail.com>
Co-authored-by: lgesuellip <102637283+lgesuellip@users.noreply.github.com>
Co-authored-by: fuckqqcom <9391575+fuckqqcom@users.noreply.github.com>
Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Piotr Mardziel <piotrm@gmail.com>
Co-authored-by: Carlos Souza <caike@users.noreply.github.com>
Co-authored-by: Paul Cowgill <pauldavidcowgill@gmail.com>
Co-authored-by: Bowen Liang <liangbowen@gf.com.cn>
Co-authored-by: Anmol Deep <anmol@getaidora.com>
Co-authored-by: André Lago <andrelago.eu@gmail.com>
Co-authored-by: Matt B <mattb@Matts-MacBook-Pro.local>
Co-authored-by: Karan Vaidya <kaavee315@gmail.com>
Co-authored-by: alan blount <alan@zeroasterisk.com>
Co-authored-by: PJ <pjhagerty@gmail.com>
Co-authored-by: devin-ai-integration[bot] <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
Co-authored-by: João Igor <joaoigm@hotmail.com>
Co-authored-by: siddharth Sambharia <siddharth.s@portkey.ai>
Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: Erick Amorim <73451993+ericklima-ca@users.noreply.github.com>
Co-authored-by: Marco Vinciguerra <88108002+VinciGit00@users.noreply.github.com>
2025-01-02 16:06:48 -05:00

1627 lines
49 KiB
Python

"""Test Agent creation and execution basic functionality."""
import os
from unittest import mock
from unittest.mock import patch
import pytest
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.utilities.events import Emitter
def test_agent_llm_creation_with_env_vars():
# Store original environment variables
original_api_key = os.environ.get("OPENAI_API_KEY")
original_api_base = os.environ.get("OPENAI_API_BASE")
original_model_name = os.environ.get("OPENAI_MODEL_NAME")
# Set up environment variables
os.environ["OPENAI_API_KEY"] = "test_api_key"
os.environ["OPENAI_API_BASE"] = "https://test-api-base.com"
os.environ["OPENAI_MODEL_NAME"] = "gpt-4-turbo"
# Create an agent without specifying LLM
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
# Check if LLM is created correctly
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-4-turbo"
assert agent.llm.api_key == "test_api_key"
assert agent.llm.base_url == "https://test-api-base.com"
# Clean up environment variables
del os.environ["OPENAI_API_KEY"]
del os.environ["OPENAI_API_BASE"]
del os.environ["OPENAI_MODEL_NAME"]
# Create an agent without specifying LLM
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
# Check if LLM is created correctly
assert isinstance(agent.llm, LLM)
assert agent.llm.model != "gpt-4-turbo"
assert agent.llm.api_key != "test_api_key"
assert agent.llm.base_url != "https://test-api-base.com"
# Restore original environment variables
if original_api_key:
os.environ["OPENAI_API_KEY"] = original_api_key
if original_api_base:
os.environ["OPENAI_API_BASE"] = original_api_base
if original_model_name:
os.environ["OPENAI_MODEL_NAME"] = original_model_name
def test_agent_creation():
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
assert agent.tools == []
def test_agent_default_values():
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
assert agent.llm.model == "gpt-4o-mini"
assert agent.allow_delegation is False
def test_custom_llm():
agent = Agent(
role="test role", goal="test goal", backstory="test backstory", llm="gpt-4"
)
assert agent.llm.model == "gpt-4"
def test_custom_llm_with_langchain():
from langchain_openai import ChatOpenAI
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=ChatOpenAI(temperature=0, model="gpt-4"),
)
assert agent.llm.model == "gpt-4"
def test_custom_llm_temperature_preservation():
from langchain_openai import ChatOpenAI
langchain_llm = ChatOpenAI(temperature=0.7, model="gpt-4")
agent = Agent(
role="temperature test role",
goal="temperature test goal",
backstory="temperature test backstory",
llm=langchain_llm,
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-4"
assert agent.llm.temperature == 0.7
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task():
from langchain_openai import ChatOpenAI
from crewai import Task
agent = Agent(
role="Math Tutor",
goal="Solve math problems accurately",
backstory="You are an experienced math tutor with a knack for explaining complex concepts simply.",
llm=ChatOpenAI(temperature=0.7, model="gpt-4o-mini"),
)
task = Task(
description="Calculate the area of a circle with radius 5 cm.",
expected_output="The calculated area of the circle in square centimeters.",
agent=agent,
)
result = agent.execute_task(task)
assert result is not None
assert (
result
== "The calculated area of the circle is approximately 78.5 square centimeters."
)
assert "square centimeters" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
allow_delegation=False,
)
task = Task(
description="How much is 1 + 1?",
agent=agent,
expected_output="the result of the math operation.",
)
output = agent.execute_task(task)
assert output == "1 + 1 is 2"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution_with_tools():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[multiplier],
allow_delegation=False,
)
task = Task(
description="What is 3 times 4?",
agent=agent,
expected_output="The result of the multiplication.",
)
with patch.object(Emitter, "emit") as emit:
output = agent.execute_task(task)
assert output == "The result of the multiplication is 12."
assert emit.call_count == 1
args, _ = emit.call_args
assert isinstance(args[1], ToolUsageFinished)
assert not args[1].from_cache
assert args[1].tool_name == "multiplier"
assert args[1].tool_args == {"first_number": 3, "second_number": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_logging_tool_usage():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[multiplier],
verbose=True,
)
assert agent.llm.model == "gpt-4o-mini"
assert agent.tools_handler.last_used_tool == {}
task = Task(
description="What is 3 times 4?",
agent=agent,
expected_output="The result of the multiplication.",
)
# force cleaning cache
agent.tools_handler.cache = CacheHandler()
output = agent.execute_task(task)
tool_usage = InstructorToolCalling(
tool_name=multiplier.name, arguments={"first_number": 3, "second_number": 4}
)
assert output == "The result of the multiplication is 12."
assert agent.tools_handler.last_used_tool.tool_name == tool_usage.tool_name
assert agent.tools_handler.last_used_tool.arguments == tool_usage.arguments
@pytest.mark.vcr(filter_headers=["authorization"])
def test_cache_hitting():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
cache_handler = CacheHandler()
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[multiplier],
allow_delegation=False,
cache_handler=cache_handler,
verbose=True,
)
task1 = Task(
description="What is 2 times 6?",
agent=agent,
expected_output="The result of the multiplication.",
)
task2 = Task(
description="What is 3 times 3?",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task1)
output = agent.execute_task(task2)
assert cache_handler._cache == {
"multiplier-{'first_number': 2, 'second_number': 6}": 12,
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
}
task = Task(
description="What is 2 times 6 times 3? Return only the number",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task)
assert output == "36"
assert cache_handler._cache == {
"multiplier-{'first_number': 2, 'second_number': 6}": 12,
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
}
with (
patch.object(CacheHandler, "read") as read,
patch.object(Emitter, "emit") as emit,
):
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
agent=agent,
expected_output="The number that is the result of the multiplication tool.",
)
output = agent.execute_task(task)
assert output == "0"
read.assert_called_with(
tool="multiplier", input={"first_number": 2, "second_number": 6}
)
assert emit.call_count == 1
args, _ = emit.call_args
assert isinstance(args[1], ToolUsageFinished)
assert args[1].from_cache
@pytest.mark.vcr(filter_headers=["authorization"])
def test_disabling_cache_for_agent():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
cache_handler = CacheHandler()
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[multiplier],
allow_delegation=False,
cache_handler=cache_handler,
cache=False,
verbose=True,
)
task1 = Task(
description="What is 2 times 6?",
agent=agent,
expected_output="The result of the multiplication.",
)
task2 = Task(
description="What is 3 times 3?",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task1)
output = agent.execute_task(task2)
assert cache_handler._cache != {
"multiplier-{'first_number': 2, 'second_number': 6}": 12,
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
}
task = Task(
description="What is 2 times 6 times 3? Return only the number",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task)
assert output == "36"
assert cache_handler._cache != {
"multiplier-{'first_number': 2, 'second_number': 6}": 12,
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
}
with patch.object(CacheHandler, "read") as read:
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool.",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task)
assert output == "12"
read.assert_not_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution_with_specific_tools():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
allow_delegation=False,
)
task = Task(
description="What is 3 times 4",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task=task, tools=[multiplier])
assert output == "The result of the multiplication is 12."
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_powered_by_new_o_model_family_that_allows_skipping_tool():
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm="o1-preview",
max_iter=3,
use_system_prompt=False,
allow_delegation=False,
)
task = Task(
description="What is 3 times 4?",
agent=agent,
expected_output="The result of the multiplication.",
)
output = agent.execute_task(task=task, tools=[multiplier])
assert output == "12"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_powered_by_new_o_model_family_that_uses_tool():
@tool
def comapny_customer_data() -> float:
"""Useful for getting customer related data."""
return "The company has 42 customers"
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm="o1-preview",
max_iter=3,
use_system_prompt=False,
allow_delegation=False,
)
task = Task(
description="How many customers does the company have?",
agent=agent,
expected_output="The number of customers",
)
output = agent.execute_task(task=task, tools=[comapny_customer_data])
assert output == "42"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_custom_max_iterations():
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=1,
allow_delegation=False,
)
with patch.object(
LLM, "call", wraps=LLM("gpt-4o", stop=["\nObservation:"]).call
) as private_mock:
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool.",
expected_output="The final answer",
)
agent.execute_task(
task=task,
tools=[get_final_answer],
)
assert private_mock.call_count == 2
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_repeated_tool_usage(capsys):
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=4,
llm="gpt-4",
allow_delegation=False,
verbose=True,
)
task = Task(
description="The final answer is 42. But don't give it until I tell you so, instead keep using the `get_final_answer` tool.",
expected_output="The final answer, don't give it until I tell you so",
)
# force cleaning cache
agent.tools_handler.cache = CacheHandler()
agent.execute_task(
task=task,
tools=[get_final_answer],
)
captured = capsys.readouterr()
assert (
"I tried reusing the same input, I must stop using this action input. I'll try something else instead."
in captured.out
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_repeated_tool_usage_check_even_with_disabled_cache(capsys):
@tool
def get_final_answer(anything: str) -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=4,
llm="gpt-4",
allow_delegation=False,
verbose=True,
cache=False,
)
task = Task(
description="The final answer is 42. But don't give it until I tell you so, instead keep using the `get_final_answer` tool.",
expected_output="The final answer, don't give it until I tell you so",
)
agent.execute_task(
task=task,
tools=[get_final_answer],
)
captured = capsys.readouterr()
assert (
"I tried reusing the same input, I must stop using this action input. I'll try something else instead."
in captured.out
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_moved_on_after_max_iterations():
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=3,
allow_delegation=False,
)
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool over and over until you're told you can give your final answer.",
expected_output="The final answer",
)
output = agent.execute_task(
task=task,
tools=[get_final_answer],
)
assert output == "The final answer is 42."
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_respect_the_max_rpm_set(capsys):
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=5,
max_rpm=1,
verbose=True,
allow_delegation=False,
)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
moveon.return_value = True
task = Task(
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
expected_output="The final answer",
)
output = agent.execute_task(
task=task,
tools=[get_final_answer],
)
assert output == "The final answer is 42."
captured = capsys.readouterr()
assert "Max RPM reached, waiting for next minute to start." in captured.out
moveon.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
from unittest.mock import patch
from crewai.tools import tool
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=4,
max_rpm=10,
verbose=True,
)
task = Task(
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
expected_output="The final answer",
tools=[get_final_answer],
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], max_rpm=1, verbose=True)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
moveon.return_value = True
crew.kickoff()
captured = capsys.readouterr()
assert "Max RPM reached, waiting for next minute to start." not in captured.out
moveon.assert_not_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_without_max_rpm_respet_crew_rpm(capsys):
from unittest.mock import patch
from crewai.tools import tool
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_rpm=10,
max_iter=2,
verbose=True,
allow_delegation=False,
)
agent2 = Agent(
role="test role2",
goal="test goal2",
backstory="test backstory2",
max_iter=1,
verbose=True,
allow_delegation=False,
)
tasks = [
Task(
description="Just say hi.", agent=agent1, expected_output="Your greeting."
),
Task(
description="NEVER give a Final Answer, unless you are told otherwise, instead keep using the `get_final_answer` tool non-stop, until you must give you best final answer",
expected_output="The final answer",
tools=[get_final_answer],
agent=agent2,
),
]
crew = Crew(agents=[agent1, agent2], tasks=tasks, max_rpm=1, verbose=True)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
moveon.return_value = True
crew.kickoff()
captured = capsys.readouterr()
assert "get_final_answer" in captured.out
assert "Max RPM reached, waiting for next minute to start." in captured.out
moveon.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_error_on_parsing_tool(capsys):
from unittest.mock import patch
from crewai.tools import tool
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=1,
verbose=True,
)
tasks = [
Task(
description="Use the get_final_answer tool.",
expected_output="The final answer",
agent=agent1,
tools=[get_final_answer],
)
]
crew = Crew(
agents=[agent1],
tasks=tasks,
verbose=True,
function_calling_llm="gpt-4o",
)
with patch.object(ToolUsage, "_original_tool_calling") as force_exception_1:
force_exception_1.side_effect = Exception("Error on parsing tool.")
with patch.object(ToolUsage, "_render") as force_exception_2:
force_exception_2.side_effect = Exception("Error on parsing tool.")
crew.kickoff()
captured = capsys.readouterr()
assert "Error on parsing tool." in captured.out
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_remembers_output_format_after_using_tools_too_many_times():
from unittest.mock import patch
from crewai.tools import tool
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_iter=6,
verbose=True,
)
tasks = [
Task(
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
expected_output="The final answer",
agent=agent1,
tools=[get_final_answer],
)
]
crew = Crew(agents=[agent1], tasks=tasks, verbose=True)
with patch.object(ToolUsage, "_remember_format") as remember_format:
crew.kickoff()
remember_format.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_use_specific_tasks_output_as_context(capsys):
agent1 = Agent(role="test role", goal="test goal", backstory="test backstory")
agent2 = Agent(role="test role2", goal="test goal2", backstory="test backstory2")
say_hi_task = Task(
description="Just say hi.", agent=agent1, expected_output="Your greeting."
)
say_bye_task = Task(
description="Just say bye.", agent=agent1, expected_output="Your farewell."
)
answer_task = Task(
description="Answer accordingly to the context you got.",
expected_output="Your answer.",
context=[say_hi_task],
agent=agent2,
)
tasks = [say_hi_task, say_bye_task, answer_task]
crew = Crew(agents=[agent1, agent2], tasks=tasks)
result = crew.kickoff()
assert "bye" not in result.raw.lower()
assert "hi" in result.raw.lower() or "hello" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_step_callback():
class StepCallback:
def callback(self, step):
pass
with patch.object(StepCallback, "callback") as callback:
@tool
def learn_about_AI() -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[learn_about_AI],
step_callback=StepCallback().callback,
)
essay = Task(
description="Write and then review an small paragraph on AI until it's AMAZING",
expected_output="The final paragraph.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
callback.return_value = "ok"
crew.kickoff()
callback.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_function_calling_llm():
llm = "gpt-4o"
@tool
def learn_about_AI() -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[learn_about_AI],
llm="gpt-4o",
max_iter=2,
function_calling_llm=llm,
)
essay = Task(
description="Write and then review an small paragraph on AI until it's AMAZING",
expected_output="The final paragraph.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
from unittest.mock import patch
import instructor
from crewai.tools.tool_usage import ToolUsage
with (
patch.object(
instructor, "from_litellm", wraps=instructor.from_litellm
) as mock_from_litellm,
patch.object(
ToolUsage,
"_original_tool_calling",
side_effect=Exception("Forced exception"),
) as mock_original_tool_calling,
):
crew.kickoff()
mock_from_litellm.assert_called()
mock_original_tool_calling.assert_called()
def test_agent_count_formatting_error():
from unittest.mock import patch
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
verbose=True,
)
parser = CrewAgentParser(agent=agent1)
with patch.object(Agent, "increment_formatting_errors") as mock_count_errors:
test_text = "This text does not match expected formats."
with pytest.raises(OutputParserException):
parser.parse(test_text)
mock_count_errors.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Get Greetings"
description: str = "Get a random greeting back"
def _run(self) -> str:
return "Howdy!"
agent1 = Agent(
role="Data Scientist",
goal="Product amazing resports on AI",
backstory="You work with data and AI",
tools=[MyCustomTool(result_as_answer=True)],
)
essay = Task(
description="Write and then review an small paragraph on AI until it's AMAZING. But first use the `Get Greetings` tool to get a greeting.",
expected_output="The final paragraph with the full review on AI and no greeting.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
result = crew.kickoff()
assert result.raw == "Howdy!"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_usage_information_is_appended_to_agent():
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Decide Greetings"
description: str = "Decide what is the appropriate greeting to use"
def _run(self) -> str:
return "Howdy!"
agent1 = Agent(
role="Friendly Neighbor",
goal="Make everyone feel welcome",
backstory="You are the friendly neighbor",
tools=[MyCustomTool(result_as_answer=True)],
)
greeting = Task(
description="Say an appropriate greeting.",
expected_output="The greeting.",
agent=agent1,
)
tasks = [greeting]
crew = Crew(agents=[agent1], tasks=tasks)
crew.kickoff()
assert agent1.tools_results == [
{
"result": "Howdy!",
"tool_name": "Decide Greetings",
"tool_args": {},
"result_as_answer": True,
}
]
def test_agent_definition_based_on_dict():
config = {
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"verbose": True,
}
agent = Agent(**config)
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
assert agent.verbose is True
assert agent.tools == []
# test for human input
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_human_input():
# Agent configuration
config = {
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
}
agent = Agent(**config)
# Task configuration with human input enabled
task = Task(
agent=agent,
description="Say the word: Hi",
expected_output="The word: Hi",
human_input=True,
)
# Side effect function for _ask_human_input to simulate multiple feedback iterations
feedback_responses = iter(
[
"Don't say hi, say Hello instead!", # First feedback
"looks good", # Second feedback to exit loop
]
)
def ask_human_input_side_effect(*args, **kwargs):
return next(feedback_responses)
with patch.object(
CrewAgentExecutor, "_ask_human_input", side_effect=ask_human_input_side_effect
) as mock_human_input:
# Execute the task
output = agent.execute_task(task)
# Assertions to ensure the agent behaves correctly
assert mock_human_input.call_count == 2 # Should have asked for feedback twice
assert output.strip().lower() == "hello" # Final output should be 'Hello'
def test_interpolate_inputs():
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
)
agent.interpolate_inputs({"topic": "AI", "goal": "life", "role": "all things"})
assert agent.role == "AI specialist"
assert agent.goal == "Figure life out"
assert agent.backstory == "I am the master of all things"
agent.interpolate_inputs({"topic": "Sales", "goal": "stuff", "role": "nothing"})
assert agent.role == "Sales specialist"
assert agent.goal == "Figure stuff out"
assert agent.backstory == "I am the master of nothing"
def test_not_using_system_prompt():
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
use_system_prompt=False,
)
agent.create_agent_executor()
assert not agent.agent_executor.prompt.get("user")
assert not agent.agent_executor.prompt.get("system")
def test_using_system_prompt():
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
)
agent.create_agent_executor()
assert agent.agent_executor.prompt.get("user")
assert agent.agent_executor.prompt.get("system")
def test_system_and_prompt_template():
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
)
expected_prompt = """<|start_header_id|>system<|end_header_id|>
You are {role}. {backstory}
Your personal goal is: {goal}
To give my best complete final answer to the task use the exact following format:
Thought: I now can give a great answer
Final Answer: my best complete final answer to the task.
Your final answer must be the great and the most complete as possible, it must be outcome described.
I MUST use these formats, my job depends on it!<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Current Task: {input}
Begin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!
Thought:<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
"""
with patch.object(CrewAgentExecutor, "_format_prompt") as mock_format_prompt:
mock_format_prompt.return_value = expected_prompt
# Trigger the _format_prompt method
agent.agent_executor._format_prompt("dummy_prompt", {})
# Assert that _format_prompt was called
mock_format_prompt.assert_called_once()
# Assert that the returned prompt matches the expected prompt
assert mock_format_prompt.return_value == expected_prompt
@patch("crewai.agent.CrewTrainingHandler")
def test_agent_training_handler(crew_training_handler):
task_prompt = "What is 1 + 1?"
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
verbose=True,
)
crew_training_handler().load.return_value = {
f"{str(agent.id)}": {"0": {"human_feedback": "good"}}
}
result = agent._training_handler(task_prompt=task_prompt)
assert result == "What is 1 + 1?\n\nYou MUST follow these instructions: \n good"
crew_training_handler.assert_has_calls(
[mock.call(), mock.call("training_data.pkl"), mock.call().load()]
)
@patch("crewai.agent.CrewTrainingHandler")
def test_agent_use_trained_data(crew_training_handler):
task_prompt = "What is 1 + 1?"
agent = Agent(
role="researcher",
goal="test goal",
backstory="test backstory",
verbose=True,
)
crew_training_handler().load.return_value = {
agent.role: {
"suggestions": [
"The result of the math operation must be right.",
"Result must be better than 1.",
]
}
}
result = agent._use_trained_data(task_prompt=task_prompt)
assert (
result == "What is 1 + 1?\n\nYou MUST follow these instructions: \n"
" - The result of the math operation must be right.\n - Result must be better than 1."
)
crew_training_handler.assert_has_calls(
[mock.call(), mock.call("trained_agents_data.pkl"), mock.call().load()]
)
def test_agent_max_retry_limit():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_retry_limit=1,
)
task = Task(
agent=agent,
description="Say the word: Hi",
expected_output="The word: Hi",
human_input=True,
)
error_message = "Error happening while sending prompt to model."
with patch.object(
CrewAgentExecutor, "invoke", wraps=agent.agent_executor.invoke
) as invoke_mock:
invoke_mock.side_effect = Exception(error_message)
assert agent._times_executed == 0
assert agent.max_retry_limit == 1
with pytest.raises(Exception) as e:
agent.execute_task(
task=task,
)
assert e.value.args[0] == error_message
assert agent._times_executed == 2
invoke_mock.assert_has_calls(
[
mock.call(
{
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
"tool_names": "",
"tools": "",
"ask_for_human_input": True,
}
),
mock.call(
{
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
"tool_names": "",
"tools": "",
"ask_for_human_input": True,
}
),
]
)
def test_agent_with_llm():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", temperature=0.7),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-3.5-turbo"
assert agent.llm.temperature == 0.7
def test_agent_with_custom_stop_words():
stop_words = ["STOP", "END"]
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", stop=stop_words),
)
assert isinstance(agent.llm, LLM)
assert set(agent.llm.stop) == set(stop_words + ["\nObservation:"])
assert all(word in agent.llm.stop for word in stop_words)
assert "\nObservation:" in agent.llm.stop
def test_agent_with_callbacks():
def dummy_callback(response):
pass
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", callbacks=[dummy_callback]),
)
assert isinstance(agent.llm, LLM)
assert len(agent.llm.callbacks) == 1
assert agent.llm.callbacks[0] == dummy_callback
def test_agent_with_additional_kwargs():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(
model="gpt-3.5-turbo",
temperature=0.8,
top_p=0.9,
presence_penalty=0.1,
frequency_penalty=0.1,
),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-3.5-turbo"
assert agent.llm.temperature == 0.8
assert agent.llm.top_p == 0.9
assert agent.llm.presence_penalty == 0.1
assert agent.llm.frequency_penalty == 0.1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call():
llm = LLM(model="gpt-3.5-turbo")
messages = [{"role": "user", "content": "Say 'Hello, World!'"}]
response = llm.call(messages)
assert "Hello, World!" in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_error():
llm = LLM(model="non-existent-model")
messages = [{"role": "user", "content": "This should fail"}]
with pytest.raises(Exception):
llm.call(messages)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_handle_context_length_exceeds_limit():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
)
original_action = AgentAction(
tool="test_tool",
tool_input="test_input",
text="test_log",
thought="test_thought",
)
with patch.object(
CrewAgentExecutor, "invoke", wraps=agent.agent_executor.invoke
) as private_mock:
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool.",
expected_output="The final answer",
)
agent.execute_task(
task=task,
)
private_mock.assert_called_once()
with patch.object(
CrewAgentExecutor, "_handle_context_length"
) as mock_handle_context:
mock_handle_context.side_effect = ValueError(
"Context length limit exceeded"
)
long_input = "This is a very long input. " * 10000
# Attempt to handle context length, expecting the mocked error
with pytest.raises(ValueError) as excinfo:
agent.agent_executor._handle_context_length(
[(original_action, long_input)]
)
assert "Context length limit exceeded" in str(excinfo.value)
mock_handle_context.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_handle_context_length_exceeds_limit_cli_no():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
sliding_context_window=False,
)
task = Task(description="test task", agent=agent, expected_output="test output")
with patch.object(
CrewAgentExecutor, "invoke", wraps=agent.agent_executor.invoke
) as private_mock:
task = Task(
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool.",
expected_output="The final answer",
)
agent.execute_task(
task=task,
)
private_mock.assert_called_once()
pytest.raises(SystemExit)
with patch.object(
CrewAgentExecutor, "_handle_context_length"
) as mock_handle_context:
mock_handle_context.assert_not_called()
def test_agent_with_all_llm_attributes():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(
model="gpt-3.5-turbo",
timeout=10,
temperature=0.7,
top_p=0.9,
n=1,
stop=["STOP", "END"],
max_tokens=100,
presence_penalty=0.1,
frequency_penalty=0.1,
logit_bias={50256: -100}, # Example: bias against the EOT token
response_format={"type": "json_object"},
seed=42,
logprobs=True,
top_logprobs=5,
base_url="https://api.openai.com/v1",
api_version="2023-05-15",
api_key="sk-your-api-key-here",
),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-3.5-turbo"
assert agent.llm.timeout == 10
assert agent.llm.temperature == 0.7
assert agent.llm.top_p == 0.9
assert agent.llm.n == 1
assert set(agent.llm.stop) == set(["STOP", "END", "\nObservation:"])
assert all(word in agent.llm.stop for word in ["STOP", "END", "\nObservation:"])
assert agent.llm.max_tokens == 100
assert agent.llm.presence_penalty == 0.1
assert agent.llm.frequency_penalty == 0.1
assert agent.llm.logit_bias == {50256: -100}
assert agent.llm.response_format == {"type": "json_object"}
assert agent.llm.seed == 42
assert agent.llm.logprobs
assert agent.llm.top_logprobs == 5
assert agent.llm.base_url == "https://api.openai.com/v1"
assert agent.llm.api_version == "2023-05-15"
assert agent.llm.api_key == "sk-your-api-key-here"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_all_attributes():
llm = LLM(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=50,
stop=["STOP"],
presence_penalty=0.1,
frequency_penalty=0.1,
)
messages = [{"role": "user", "content": "Say 'Hello, World!' and then say STOP"}]
response = llm.call(messages)
assert "Hello, World!" in response
assert "STOP" not in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_ollama_llama3():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434"),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "ollama/llama3.2:3b"
assert agent.llm.base_url == "http://localhost:11434"
task = "Respond in 20 words. Which model are you?"
response = agent.llm.call([{"role": "user", "content": task}])
assert response
assert len(response.split()) <= 25 # Allow a little flexibility in word count
assert "Llama3" in response or "AI" in response or "language model" in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_ollama_llama3():
llm = LLM(
model="ollama/llama3.2:3b",
base_url="http://localhost:11434",
temperature=0.7,
max_tokens=30,
)
messages = [
{"role": "user", "content": "Respond in 20 words. Which model are you?"}
]
response = llm.call(messages)
assert response
assert len(response.split()) <= 25 # Allow a little flexibility in word count
assert "Llama3" in response or "AI" in response or "language model" in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_basic():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo"),
)
task = Task(
description="Calculate 2 + 2",
expected_output="The result of the calculation",
agent=agent,
)
result = agent.execute_task(task)
assert "4" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_context():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo"),
)
task = Task(
description="Summarize the given context in one sentence",
expected_output="A one-sentence summary",
agent=agent,
)
context = "The quick brown fox jumps over the lazy dog. This sentence contains every letter of the alphabet."
result = agent.execute_task(task, context=context)
assert len(result.split(".")) == 3
assert "fox" in result.lower() and "dog" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_tool():
@tool
def dummy_tool(query: str) -> str:
"""Useful for when you need to get a dummy result for a query."""
return f"Dummy result for: {query}"
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo"),
tools=[dummy_tool],
)
task = Task(
description="Use the dummy tool to get a result for 'test query'",
expected_output="The result from the dummy tool",
agent=agent,
)
result = agent.execute_task(task)
assert "Dummy result for: test query" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_custom_llm():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", temperature=0.7, max_tokens=50),
)
task = Task(
description="Write a haiku about AI",
expected_output="A haiku (3 lines, 5-7-5 syllable pattern) about AI",
agent=agent,
)
result = agent.execute_task(task)
assert result.startswith(
"Artificial minds,\nCoding thoughts in circuits bright,\nAI's silent might."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_ollama():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434"),
)
task = Task(
description="Explain what AI is in one sentence",
expected_output="A one-sentence explanation of AI",
agent=agent,
)
result = agent.execute_task(task)
assert len(result.split(".")) == 2
assert "AI" in result or "artificial intelligence" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources():
# Create a knowledge source with some content
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{"content": content}]
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Assert that the agent provides the correct information
assert "red" in result.raw.lower()