Files
crewAI/src/crewai/flow/utils.py
devin-ai-integration[bot] 45b802a625 Docstring, Error Handling, and Type Hints Improvements (#1828)
* docs: add comprehensive docstrings to Flow class and methods

- Added NumPy-style docstrings to all decorator functions
- Added detailed documentation to Flow class methods
- Included parameter types, return types, and examples
- Enhanced documentation clarity and completeness

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add secure path handling utilities

- Add path_utils.py with safe path handling functions
- Implement path validation and security checks
- Integrate secure path handling in flow_visualizer.py
- Add path validation in html_template_handler.py
- Add comprehensive error handling for path operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add comprehensive docstrings and type hints to flow utils (#1819)

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations and fix import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations to flow utils and visualization utils

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: resolve import sorting and type annotation issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: properly initialize and update edge_smooth variable

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-31 01:39:19 -03:00

363 lines
12 KiB
Python

"""
Utility functions for flow visualization and dependency analysis.
This module provides core functionality for analyzing and manipulating flow structures,
including node level calculation, ancestor tracking, and return value analysis.
Functions in this module are primarily used by the visualization system to create
accurate and informative flow diagrams.
Example
-------
>>> flow = Flow()
>>> node_levels = calculate_node_levels(flow)
>>> ancestors = build_ancestor_dict(flow)
"""
import ast
import inspect
import textwrap
from typing import Any, Dict, List, Optional, Set, Union
def get_possible_return_constants(function: Any) -> Optional[List[str]]:
try:
source = inspect.getsource(function)
except OSError:
# Can't get source code
return None
except Exception as e:
print(f"Error retrieving source code for function {function.__name__}: {e}")
return None
try:
# Remove leading indentation
source = textwrap.dedent(source)
# Parse the source code into an AST
code_ast = ast.parse(source)
except IndentationError as e:
print(f"IndentationError while parsing source code of {function.__name__}: {e}")
print(f"Source code:\n{source}")
return None
except SyntaxError as e:
print(f"SyntaxError while parsing source code of {function.__name__}: {e}")
print(f"Source code:\n{source}")
return None
except Exception as e:
print(f"Unexpected error while parsing source code of {function.__name__}: {e}")
print(f"Source code:\n{source}")
return None
return_values = set()
dict_definitions = {}
class DictionaryAssignmentVisitor(ast.NodeVisitor):
def visit_Assign(self, node):
# Check if this assignment is assigning a dictionary literal to a variable
if isinstance(node.value, ast.Dict) and len(node.targets) == 1:
target = node.targets[0]
if isinstance(target, ast.Name):
var_name = target.id
dict_values = []
# Extract string values from the dictionary
for val in node.value.values:
if isinstance(val, ast.Constant) and isinstance(val.value, str):
dict_values.append(val.value)
# If non-string, skip or just ignore
if dict_values:
dict_definitions[var_name] = dict_values
self.generic_visit(node)
class ReturnVisitor(ast.NodeVisitor):
def visit_Return(self, node):
# Direct string return
if isinstance(node.value, ast.Constant) and isinstance(
node.value.value, str
):
return_values.add(node.value.value)
# Dictionary-based return, like return paths[result]
elif isinstance(node.value, ast.Subscript):
# Check if we're subscripting a known dictionary variable
if isinstance(node.value.value, ast.Name):
var_name = node.value.value.id
if var_name in dict_definitions:
# Add all possible dictionary values
for v in dict_definitions[var_name]:
return_values.add(v)
self.generic_visit(node)
# First pass: identify dictionary assignments
DictionaryAssignmentVisitor().visit(code_ast)
# Second pass: identify returns
ReturnVisitor().visit(code_ast)
return list(return_values) if return_values else None
def calculate_node_levels(flow: Any) -> Dict[str, int]:
"""
Calculate the hierarchical level of each node in the flow.
Performs a breadth-first traversal of the flow graph to assign levels
to nodes, starting with start methods at level 0.
Parameters
----------
flow : Any
The flow instance containing methods, listeners, and router configurations.
Returns
-------
Dict[str, int]
Dictionary mapping method names to their hierarchical levels.
Notes
-----
- Start methods are assigned level 0
- Each subsequent connected node is assigned level = parent_level + 1
- Handles both OR and AND conditions for listeners
- Processes router paths separately
"""
levels: Dict[str, int] = {}
queue: List[str] = []
visited: Set[str] = set()
pending_and_listeners: Dict[str, Set[str]] = {}
# Make all start methods at level 0
for method_name, method in flow._methods.items():
if hasattr(method, "__is_start_method__"):
levels[method_name] = 0
queue.append(method_name)
# Breadth-first traversal to assign levels
while queue:
current = queue.pop(0)
current_level = levels[current]
visited.add(current)
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
if current in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
elif condition_type == "AND":
if listener_name not in pending_and_listeners:
pending_and_listeners[listener_name] = set()
if current in trigger_methods:
pending_and_listeners[listener_name].add(current)
if set(trigger_methods) == pending_and_listeners[listener_name]:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
# Handle router connections
if current in flow._routers:
router_method_name = current
paths = flow._router_paths.get(router_method_name, [])
for path in paths:
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
return levels
def count_outgoing_edges(flow: Any) -> Dict[str, int]:
"""
Count the number of outgoing edges for each method in the flow.
Parameters
----------
flow : Any
The flow instance to analyze.
Returns
-------
Dict[str, int]
Dictionary mapping method names to their outgoing edge count.
"""
counts = {}
for method_name in flow._methods:
counts[method_name] = 0
for method_name in flow._listeners:
_, trigger_methods = flow._listeners[method_name]
for trigger in trigger_methods:
if trigger in flow._methods:
counts[trigger] += 1
return counts
def build_ancestor_dict(flow: Any) -> Dict[str, Set[str]]:
"""
Build a dictionary mapping each node to its ancestor nodes.
Parameters
----------
flow : Any
The flow instance to analyze.
Returns
-------
Dict[str, Set[str]]
Dictionary mapping each node to a set of its ancestor nodes.
"""
ancestors: Dict[str, Set[str]] = {node: set() for node in flow._methods}
visited: Set[str] = set()
for node in flow._methods:
if node not in visited:
dfs_ancestors(node, ancestors, visited, flow)
return ancestors
def dfs_ancestors(
node: str,
ancestors: Dict[str, Set[str]],
visited: Set[str],
flow: Any
) -> None:
"""
Perform depth-first search to build ancestor relationships.
Parameters
----------
node : str
Current node being processed.
ancestors : Dict[str, Set[str]]
Dictionary tracking ancestor relationships.
visited : Set[str]
Set of already visited nodes.
flow : Any
The flow instance being analyzed.
Notes
-----
This function modifies the ancestors dictionary in-place to build
the complete ancestor graph.
"""
if node in visited:
return
visited.add(node)
# Handle regular listeners
for listener_name, (_, trigger_methods) in flow._listeners.items():
if node in trigger_methods:
ancestors[listener_name].add(node)
ancestors[listener_name].update(ancestors[node])
dfs_ancestors(listener_name, ancestors, visited, flow)
# Handle router methods separately
if node in flow._routers:
router_method_name = node
paths = flow._router_paths.get(router_method_name, [])
for path in paths:
for listener_name, (_, trigger_methods) in flow._listeners.items():
if path in trigger_methods:
# Only propagate the ancestors of the router method, not the router method itself
ancestors[listener_name].update(ancestors[node])
dfs_ancestors(listener_name, ancestors, visited, flow)
def is_ancestor(node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]) -> bool:
"""
Check if one node is an ancestor of another.
Parameters
----------
node : str
The node to check ancestors for.
ancestor_candidate : str
The potential ancestor node.
ancestors : Dict[str, Set[str]]
Dictionary containing ancestor relationships.
Returns
-------
bool
True if ancestor_candidate is an ancestor of node, False otherwise.
"""
return ancestor_candidate in ancestors.get(node, set())
def build_parent_children_dict(flow: Any) -> Dict[str, List[str]]:
"""
Build a dictionary mapping parent nodes to their children.
Parameters
----------
flow : Any
The flow instance to analyze.
Returns
-------
Dict[str, List[str]]
Dictionary mapping parent method names to lists of their child method names.
Notes
-----
- Maps listeners to their trigger methods
- Maps router methods to their paths and listeners
- Children lists are sorted for consistent ordering
"""
parent_children: Dict[str, List[str]] = {}
# Map listeners to their trigger methods
for listener_name, (_, trigger_methods) in flow._listeners.items():
for trigger in trigger_methods:
if trigger not in parent_children:
parent_children[trigger] = []
if listener_name not in parent_children[trigger]:
parent_children[trigger].append(listener_name)
# Map router methods to their paths and to listeners
for router_method_name, paths in flow._router_paths.items():
for path in paths:
# Map router method to listeners of each path
for listener_name, (_, trigger_methods) in flow._listeners.items():
if path in trigger_methods:
if router_method_name not in parent_children:
parent_children[router_method_name] = []
if listener_name not in parent_children[router_method_name]:
parent_children[router_method_name].append(listener_name)
return parent_children
def get_child_index(parent: str, child: str, parent_children: Dict[str, List[str]]) -> int:
"""
Get the index of a child node in its parent's sorted children list.
Parameters
----------
parent : str
The parent node name.
child : str
The child node name to find the index for.
parent_children : Dict[str, List[str]]
Dictionary mapping parents to their children lists.
Returns
-------
int
Zero-based index of the child in its parent's sorted children list.
"""
children = parent_children.get(parent, [])
children.sort()
return children.index(child)