Files
crewAI/tests/task_test.py
2025-02-04 16:07:22 -05:00

1286 lines
42 KiB
Python

"""Test Agent creation and execution basic functionality."""
import hashlib
import json
import os
from unittest.mock import MagicMock, patch
import pytest
from pydantic import BaseModel
from pydantic_core import ValidationError
from crewai import Agent, Crew, Process, Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.converter import Converter
def test_task_tool_reflect_agent_tools():
from crewai.tools import tool
@tool
def fake_tool() -> None:
"Fake tool"
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
tools=[fake_tool],
allow_delegation=False,
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 ideas.",
agent=researcher,
)
assert task.tools == [fake_tool]
def test_task_tool_takes_precedence_over_agent_tools():
from crewai.tools import tool
@tool
def fake_tool() -> None:
"Fake tool"
@tool
def fake_task_tool() -> None:
"Fake tool"
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
tools=[fake_tool],
allow_delegation=False,
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 ideas.",
agent=researcher,
tools=[fake_task_tool],
)
assert task.tools == [fake_task_tool]
def test_task_prompt_includes_expected_output():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
agent=researcher,
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
task.execute_sync(agent=researcher)
execute.assert_called_once_with(task=task, context=None, tools=[])
def test_task_callback():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task_completed = MagicMock(return_value="done")
task = Task(
name="Brainstorm",
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
agent=researcher,
callback=task_completed,
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
task.execute_sync(agent=researcher)
task_completed.assert_called_once_with(task.output)
assert task.output.description == task.description
assert task.output.expected_output == task.expected_output
assert task.output.name == task.name
def test_task_callback_returns_task_output():
from crewai.tasks.output_format import OutputFormat
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task_completed = MagicMock(return_value="done")
task = Task(
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
agent=researcher,
callback=task_completed,
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "exported_ok"
task.execute_sync(agent=researcher)
# Ensure the callback is called with a TaskOutput object serialized to JSON
task_completed.assert_called_once()
callback_data = task_completed.call_args[0][0]
# Check if callback_data is TaskOutput object or JSON string
if isinstance(callback_data, TaskOutput):
callback_data = json.dumps(callback_data.model_dump())
assert isinstance(callback_data, str)
output_dict = json.loads(callback_data)
expected_output = {
"description": task.description,
"raw": "exported_ok",
"pydantic": None,
"json_dict": None,
"agent": researcher.role,
"summary": "Give me a list of 5 interesting ideas to explore...",
"name": None,
"expected_output": "Bullet point list of 5 interesting ideas.",
"output_format": OutputFormat.RAW,
}
assert output_dict == expected_output
def test_execute_with_agent():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
)
with patch.object(Agent, "execute_task", return_value="ok") as execute:
task.execute_sync(agent=researcher)
execute.assert_called_once_with(task=task, context=None, tools=[])
def test_async_execution():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
async_execution=True,
agent=researcher,
)
with patch.object(Agent, "execute_task", return_value="ok") as execute:
execution = task.execute_async(agent=researcher)
result = execution.result()
assert result.raw == "ok"
execute.assert_called_once_with(task=task, context=None, tools=[])
def test_multiple_output_type_error():
class Output(BaseModel):
field: str
with pytest.raises(ValidationError):
Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
output_json=Output,
output_pydantic=Output,
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_pydantic_sequential():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
assert isinstance(result.pydantic, ScoreOutput)
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_pydantic_hierarchical():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
agent=scorer,
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm="gpt-4o",
)
result = crew.kickoff()
assert isinstance(result.pydantic, ScoreOutput)
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_sequential():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
output_file="score.json",
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
assert '{"score": 4}' == result.json
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_hierarchical():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm="gpt-4o",
)
result = crew.kickoff()
assert result.json == '{"score": 4}'
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_json_property_without_output_json():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput, # Using output_pydantic instead of output_json
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
with pytest.raises(ValueError) as excinfo:
_ = result.json # Attempt to access the json property
assert "No JSON output found in the final task." in str(excinfo.value)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_dict_sequential():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task], process=Process.sequential)
result = crew.kickoff()
assert {"score": 4} == result.json_dict
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_dict_hierarchical():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm="gpt-4o",
)
result = crew.kickoff()
assert {"score": 4} == result.json_dict
assert result.to_dict() == {"score": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_pydantic_to_another_task():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
llm="gpt-4-0125-preview",
function_calling_llm="gpt-3.5-turbo-0125",
verbose=True,
)
task1 = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
agent=scorer,
)
task2 = Task(
description="Given the score the title 'The impact of AI in the future of work' got, give me an integer score between 1-5 for the following title: 'Return of the Jedi', you MUST give it a score, use your best judgment",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task1, task2], verbose=True)
result = crew.kickoff()
pydantic_result = result.pydantic
assert isinstance(
pydantic_result, ScoreOutput
), "Expected pydantic result to be of type ScoreOutput"
assert pydantic_result.score == 5
@pytest.mark.vcr(filter_headers=["authorization"])
def test_output_json_to_another_task():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task1 = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
task2 = Task(
description="Given the score the title 'The impact of AI in the future of work' got, give me an integer score between 1-5 for the following title: 'Return of the Jedi'",
expected_output="The score of the title.",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task1, task2])
result = crew.kickoff()
assert '{"score": 4}' == result.json
@pytest.mark.vcr(filter_headers=["authorization"])
def test_save_task_output():
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_file="score.json",
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
with patch.object(Task, "_save_file") as save_file:
save_file.return_value = None
crew.kickoff()
save_file.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_save_task_json_output():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_file="score.json",
output_json=ScoreOutput,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
crew.kickoff()
output_file_exists = os.path.exists("score.json")
assert output_file_exists
assert {"score": 4} == json.loads(open("score.json").read())
if output_file_exists:
os.remove("score.json")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_save_task_pydantic_output():
class ScoreOutput(BaseModel):
score: int
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_file="score.json",
output_pydantic=ScoreOutput,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
crew.kickoff()
output_file_exists = os.path.exists("score.json")
assert output_file_exists
assert {"score": 4} == json.loads(open("score.json").read())
if output_file_exists:
os.remove("score.json")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_custom_converter_cls():
class ScoreOutput(BaseModel):
score: int
class ScoreConverter(Converter):
pass
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
output_pydantic=ScoreOutput,
converter_cls=ScoreConverter,
agent=scorer,
)
crew = Crew(agents=[scorer], tasks=[task])
with patch.object(
ScoreConverter, "to_pydantic", return_value=ScoreOutput(score=5)
) as mock_to_pydantic:
crew.kickoff()
mock_to_pydantic.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_increment_delegations_for_hierarchical_process():
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=False,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm="gpt-4o",
)
with patch.object(Task, "increment_delegations") as increment_delegations:
increment_delegations.return_value = None
crew.kickoff()
increment_delegations.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_increment_delegations_for_sequential_process():
manager = Agent(
role="Manager",
goal="Coordinate scoring processes",
backstory="You're great at delegating work about scoring.",
allow_delegation=True,
)
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
allow_delegation=True,
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'",
expected_output="The score of the title.",
agent=manager,
)
crew = Crew(
agents=[manager, scorer],
tasks=[task],
process=Process.sequential,
)
with patch.object(Task, "increment_delegations") as increment_delegations:
increment_delegations.return_value = None
crew.kickoff()
increment_delegations.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_increment_tool_errors():
from crewai.tools import tool
@tool
def scoring_examples() -> None:
"Useful examples for scoring titles."
raise Exception("Error")
scorer = Agent(
role="Scorer",
goal="Score the title",
backstory="You're an expert scorer, specialized in scoring titles.",
tools=[scoring_examples],
)
task = Task(
description="Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work', check examples to based your evaluation.",
expected_output="The score of the title.",
)
crew = Crew(
agents=[scorer],
tasks=[task],
process=Process.hierarchical,
manager_llm="gpt-4-0125-preview",
)
with patch.object(Task, "increment_tools_errors") as increment_tools_errors:
increment_tools_errors.return_value = None
crew.kickoff()
assert len(increment_tools_errors.mock_calls) > 0
def test_task_definition_based_on_dict():
config = {
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work', check examples to based your evaluation.",
"expected_output": "The score of the title.",
}
task = Task(**config)
assert task.description == config["description"]
assert task.expected_output == config["expected_output"]
assert task.agent is None
def test_conditional_task_definition_based_on_dict():
config = {
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work', check examples to based your evaluation.",
"expected_output": "The score of the title.",
}
task = ConditionalTask(**config, condition=lambda x: True)
assert task.description == config["description"]
assert task.expected_output == config["expected_output"]
assert task.agent is None
def test_interpolate_inputs():
task = Task(
description="Give me a list of 5 interesting ideas about {topic} to explore for an article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas about {topic}.",
output_file="/tmp/{topic}/output_{date}.txt",
)
task.interpolate_inputs_and_add_conversation_history(
inputs={"topic": "AI", "date": "2025"}
)
assert (
task.description
== "Give me a list of 5 interesting ideas about AI to explore for an article, what makes them unique and interesting."
)
assert task.expected_output == "Bullet point list of 5 interesting ideas about AI."
assert task.output_file == "/tmp/AI/output_2025.txt"
task.interpolate_inputs_and_add_conversation_history(
inputs={"topic": "ML", "date": "2025"}
)
assert (
task.description
== "Give me a list of 5 interesting ideas about ML to explore for an article, what makes them unique and interesting."
)
assert task.expected_output == "Bullet point list of 5 interesting ideas about ML."
assert task.output_file == "/tmp/ML/output_2025.txt"
def test_interpolate_only():
"""Test the interpolate_only method for various scenarios including JSON structure preservation."""
task = Task(
description="Unused in this test", expected_output="Unused in this test"
)
# Test JSON structure preservation
json_string = '{"info": "Look at {placeholder}", "nested": {"val": "{nestedVal}"}}'
result = task.interpolate_only(
input_string=json_string,
inputs={"placeholder": "the data", "nestedVal": "something else"},
)
assert '"info": "Look at the data"' in result
assert '"val": "something else"' in result
assert "{placeholder}" not in result
assert "{nestedVal}" not in result
# Test normal string interpolation
normal_string = "Hello {name}, welcome to {place}!"
result = task.interpolate_only(
input_string=normal_string, inputs={"name": "John", "place": "CrewAI"}
)
assert result == "Hello John, welcome to CrewAI!"
# Test empty string
result = task.interpolate_only(input_string="", inputs={"unused": "value"})
assert result == ""
# Test string with no placeholders
no_placeholders = "Hello, this is a test"
result = task.interpolate_only(
input_string=no_placeholders, inputs={"unused": "value"}
)
assert result == no_placeholders
def test_interpolate_only_with_dict_inside_expected_output():
"""Test the interpolate_only method for various scenarios including JSON structure preservation."""
task = Task(
description="Unused in this test",
expected_output="Unused in this test: {questions}",
)
json_string = '{"questions": {"main_question": "What is the user\'s name?", "secondary_question": "What is the user\'s age?"}}'
result = task.interpolate_only(
input_string=json_string,
inputs={
"questions": {
"main_question": "What is the user's name?",
"secondary_question": "What is the user's age?",
}
},
)
assert '"main_question": "What is the user\'s name?"' in result
assert '"secondary_question": "What is the user\'s age?"' in result
assert result == json_string
normal_string = "Hello {name}, welcome to {place}!"
result = task.interpolate_only(
input_string=normal_string, inputs={"name": "John", "place": "CrewAI"}
)
assert result == "Hello John, welcome to CrewAI!"
result = task.interpolate_only(input_string="", inputs={"unused": "value"})
assert result == ""
no_placeholders = "Hello, this is a test"
result = task.interpolate_only(
input_string=no_placeholders, inputs={"unused": "value"}
)
assert result == no_placeholders
def test_task_output_str_with_pydantic():
from crewai.tasks.output_format import OutputFormat
class ScoreOutput(BaseModel):
score: int
score_output = ScoreOutput(score=4)
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
pydantic=score_output,
output_format=OutputFormat.PYDANTIC,
)
assert str(task_output) == str(score_output)
def test_task_output_str_with_json_dict():
from crewai.tasks.output_format import OutputFormat
json_dict = {"score": 4}
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
json_dict=json_dict,
output_format=OutputFormat.JSON,
)
assert str(task_output) == str(json_dict)
def test_task_output_str_with_raw():
from crewai.tasks.output_format import OutputFormat
raw_output = "Raw task output"
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
raw=raw_output,
output_format=OutputFormat.RAW,
)
assert str(task_output) == raw_output
def test_task_output_str_with_pydantic_and_json_dict():
from crewai.tasks.output_format import OutputFormat
class ScoreOutput(BaseModel):
score: int
score_output = ScoreOutput(score=4)
json_dict = {"score": 4}
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
pydantic=score_output,
json_dict=json_dict,
output_format=OutputFormat.PYDANTIC,
)
# When both pydantic and json_dict are present, pydantic should take precedence
assert str(task_output) == str(score_output)
def test_task_output_str_with_none():
from crewai.tasks.output_format import OutputFormat
task_output = TaskOutput(
description="Test task",
agent="Test Agent",
output_format=OutputFormat.RAW,
)
assert str(task_output) == ""
def test_key():
original_description = "Give me a list of 5 interesting ideas about {topic} to explore for an article, what makes them unique and interesting."
original_expected_output = "Bullet point list of 5 interesting ideas about {topic}."
task = Task(
description=original_description,
expected_output=original_expected_output,
)
hash = hashlib.md5(
f"{original_description}|{original_expected_output}".encode()
).hexdigest()
assert task.key == hash, "The key should be the hash of the description."
task.interpolate_inputs_and_add_conversation_history(inputs={"topic": "AI"})
assert (
task.key == hash
), "The key should be the hash of the non-interpolated description."
def test_output_file_validation():
"""Test output file path validation."""
# Valid paths
assert (
Task(
description="Test task",
expected_output="Test output",
output_file="output.txt",
).output_file
== "output.txt"
)
assert (
Task(
description="Test task",
expected_output="Test output",
output_file="/tmp/output.txt",
).output_file
== "tmp/output.txt"
)
assert (
Task(
description="Test task",
expected_output="Test output",
output_file="{dir}/output_{date}.txt",
).output_file
== "{dir}/output_{date}.txt"
)
# Invalid paths
with pytest.raises(ValueError, match="Path traversal"):
Task(
description="Test task",
expected_output="Test output",
output_file="../output.txt",
)
with pytest.raises(ValueError, match="Path traversal"):
Task(
description="Test task",
expected_output="Test output",
output_file="folder/../output.txt",
)
with pytest.raises(ValueError, match="Shell special characters"):
Task(
description="Test task",
expected_output="Test output",
output_file="output.txt | rm -rf /",
)
with pytest.raises(ValueError, match="Shell expansion"):
Task(
description="Test task",
expected_output="Test output",
output_file="~/output.txt",
)
with pytest.raises(ValueError, match="Shell expansion"):
Task(
description="Test task",
expected_output="Test output",
output_file="$HOME/output.txt",
)
with pytest.raises(ValueError, match="Invalid template variable"):
Task(
description="Test task",
expected_output="Test output",
output_file="{invalid-name}/output.txt",
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_execution_times():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
task = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 interesting ideas.",
agent=researcher,
)
assert task.start_time is None
assert task.end_time is None
assert task.execution_duration is None
task.execute_sync(agent=researcher)
assert task.start_time is not None
assert task.end_time is not None
assert task.execution_duration == (task.end_time - task.start_time).total_seconds()
def test_interpolate_with_list_of_strings():
task = Task(
description="Test list interpolation",
expected_output="List: {items}",
)
# Test simple list of strings
input_str = "Available items: {items}"
inputs = {"items": ["apple", "banana", "cherry"]}
result = task.interpolate_only(input_str, inputs)
assert result == f"Available items: {inputs['items']}"
# Test empty list
empty_list_input = {"items": []}
result = task.interpolate_only(input_str, empty_list_input)
assert result == "Available items: []"
def test_interpolate_with_list_of_dicts():
task = Task(
description="Test list of dicts interpolation",
expected_output="People: {people}",
)
input_data = {
"people": [
{"name": "Alice", "age": 30, "skills": ["Python", "AI"]},
{"name": "Bob", "age": 25, "skills": ["Java", "Cloud"]},
]
}
result = task.interpolate_only("{people}", input_data)
parsed_result = eval(result)
assert isinstance(parsed_result, list)
assert len(parsed_result) == 2
assert parsed_result[0]["name"] == "Alice"
assert parsed_result[0]["age"] == 30
assert parsed_result[0]["skills"] == ["Python", "AI"]
assert parsed_result[1]["name"] == "Bob"
assert parsed_result[1]["age"] == 25
assert parsed_result[1]["skills"] == ["Java", "Cloud"]
def test_interpolate_with_nested_structures():
task = Task(
description="Test nested structures",
expected_output="Company: {company}",
)
input_data = {
"company": {
"name": "TechCorp",
"departments": [
{
"name": "Engineering",
"employees": 50,
"tools": ["Git", "Docker", "Kubernetes"],
},
{"name": "Sales", "employees": 20, "regions": {"north": 5, "south": 3}},
],
}
}
result = task.interpolate_only("{company}", input_data)
parsed = eval(result)
assert parsed["name"] == "TechCorp"
assert len(parsed["departments"]) == 2
assert parsed["departments"][0]["tools"] == ["Git", "Docker", "Kubernetes"]
assert parsed["departments"][1]["regions"]["north"] == 5
def test_interpolate_with_special_characters():
task = Task(
description="Test special characters in dicts",
expected_output="Data: {special_data}",
)
input_data = {
"special_data": {
"quotes": """This has "double" and 'single' quotes""",
"unicode": "文字化けテスト",
"symbols": "!@#$%^&*()",
"empty": "",
}
}
result = task.interpolate_only("{special_data}", input_data)
parsed = eval(result)
assert parsed["quotes"] == """This has "double" and 'single' quotes"""
assert parsed["unicode"] == "文字化けテスト"
assert parsed["symbols"] == "!@#$%^&*()"
assert parsed["empty"] == ""
def test_interpolate_mixed_types():
task = Task(
description="Test mixed type interpolation",
expected_output="Mixed: {data}",
)
input_data = {
"data": {
"name": "Test Dataset",
"samples": 1000,
"features": ["age", "income", "location"],
"metadata": {
"source": "public",
"validated": True,
"tags": ["demo", "test", "temp"],
},
}
}
result = task.interpolate_only("{data}", input_data)
parsed = eval(result)
assert parsed["name"] == "Test Dataset"
assert parsed["samples"] == 1000
assert parsed["metadata"]["tags"] == ["demo", "test", "temp"]
def test_interpolate_complex_combination():
task = Task(
description="Test complex combination",
expected_output="Report: {report}",
)
input_data = {
"report": [
{
"month": "January",
"metrics": {"sales": 15000, "expenses": 8000, "profit": 7000},
"top_products": ["Product A", "Product B"],
},
{
"month": "February",
"metrics": {"sales": 18000, "expenses": 8500, "profit": 9500},
"top_products": ["Product C", "Product D"],
},
]
}
result = task.interpolate_only("{report}", input_data)
parsed = eval(result)
assert len(parsed) == 2
assert parsed[0]["month"] == "January"
assert parsed[1]["metrics"]["profit"] == 9500
assert "Product D" in parsed[1]["top_products"]
def test_interpolate_invalid_type_validation():
task = Task(
description="Test invalid type validation",
expected_output="Should never reach here",
)
# Test with invalid top-level type
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": set()}) # type: ignore we are purposely testing this failure
assert "Unsupported type set" in str(excinfo.value)
# Test with invalid nested type
invalid_nested = {
"profile": {
"name": "John",
"age": 30,
"tags": {"a", "b", "c"}, # Set is invalid
}
}
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": invalid_nested})
assert "Unsupported type set" in str(excinfo.value)
def test_interpolate_custom_object_validation():
task = Task(
description="Test custom object rejection",
expected_output="Should never reach here",
)
class CustomObject:
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)
# Test with custom object at top level
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{obj}", {"obj": CustomObject(5)}) # type: ignore we are purposely testing this failure
assert "Unsupported type CustomObject" in str(excinfo.value)
# Test with nested custom object in dictionary
with pytest.raises(ValueError) as excinfo:
task.interpolate_only(
"{data}", {"data": {"valid": 1, "invalid": CustomObject(5)}}
)
assert "Unsupported type CustomObject" in str(excinfo.value)
# Test with nested custom object in list
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": [1, "valid", CustomObject(5)]})
assert "Unsupported type CustomObject" in str(excinfo.value)
# Test with deeply nested custom object
with pytest.raises(ValueError) as excinfo:
task.interpolate_only(
"{data}", {"data": {"level1": {"level2": [{"level3": CustomObject(5)}]}}}
)
assert "Unsupported type CustomObject" in str(excinfo.value)
def test_interpolate_valid_complex_types():
task = Task(
description="Test valid complex types",
expected_output="Validation should pass",
)
# Valid complex structure
valid_data = {
"name": "Valid Dataset",
"stats": {
"count": 1000,
"distribution": [0.2, 0.3, 0.5],
"features": ["age", "income"],
"nested": {"deep": [1, 2, 3], "deeper": {"a": 1, "b": 2.5}},
},
}
# Should not raise any errors
result = task.interpolate_only("{data}", {"data": valid_data})
parsed = eval(result)
assert parsed["name"] == "Valid Dataset"
assert parsed["stats"]["nested"]["deeper"]["b"] == 2.5
def test_interpolate_edge_cases():
task = Task(
description="Test edge cases",
expected_output="Edge case handling",
)
# Test empty dict and list
assert task.interpolate_only("{}", {"data": {}}) == "{}"
assert task.interpolate_only("[]", {"data": []}) == "[]"
# Test numeric types
assert task.interpolate_only("{num}", {"num": 42}) == "42"
assert task.interpolate_only("{num}", {"num": 3.14}) == "3.14"
# Test boolean values (valid JSON types)
assert task.interpolate_only("{flag}", {"flag": True}) == "True"
assert task.interpolate_only("{flag}", {"flag": False}) == "False"
def test_interpolate_valid_types():
task = Task(
description="Test valid types including null and boolean",
expected_output="Should pass validation",
)
# Test with boolean and null values (valid JSON types)
valid_data = {
"name": "Test",
"active": True,
"deleted": False,
"optional": None,
"nested": {"flag": True, "empty": None},
}
result = task.interpolate_only("{data}", {"data": valid_data})
parsed = eval(result)
assert parsed["active"] is True
assert parsed["deleted"] is False
assert parsed["optional"] is None
assert parsed["nested"]["flag"] is True
assert parsed["nested"]["empty"] is None