mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-14 18:48:29 +00:00
- add type annotations across utility modules - refactor printer system, agent utils, and imports for consistency - remove unused modules, constants, and redundant patterns - improve runtime type checks, exception handling, and guardrail validation - standardize warning suppression and logging utilities - fix llm typing, threading/typing edge cases, and test behavior
99 lines
2.9 KiB
Python
99 lines
2.9 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Any, Generic, TypeGuard, TypeVar
|
|
|
|
from pydantic import BaseModel
|
|
|
|
if TYPE_CHECKING:
|
|
from crewai.agent import Agent
|
|
from crewai.llm import LLM
|
|
from crewai.llms.base_llm import BaseLLM
|
|
|
|
from crewai.utilities.logger_utils import suppress_warnings
|
|
from crewai.utilities.types import LLMMessage
|
|
|
|
T = TypeVar("T", bound=BaseModel)
|
|
|
|
|
|
def _is_valid_llm(llm: Any) -> TypeGuard[str | LLM | BaseLLM]:
|
|
"""Type guard to ensure LLM is valid and not None.
|
|
|
|
Args:
|
|
llm: The LLM to validate
|
|
|
|
Returns:
|
|
True if LLM is valid (string or has model attribute), False otherwise
|
|
"""
|
|
return llm is not None and (isinstance(llm, str) or hasattr(llm, "model"))
|
|
|
|
|
|
class InternalInstructor(Generic[T]):
|
|
"""Class that wraps an agent LLM with instructor for structured output generation.
|
|
|
|
Attributes:
|
|
content: The content to be processed
|
|
model: The Pydantic model class for the response
|
|
agent: The agent with LLM
|
|
llm: The LLM instance or model name
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
content: str,
|
|
model: type[T],
|
|
agent: Agent | None = None,
|
|
llm: LLM | BaseLLM | str | None = None,
|
|
) -> None:
|
|
"""Initialize InternalInstructor.
|
|
|
|
Args:
|
|
content: The content to be processed
|
|
model: The Pydantic model class for the response
|
|
agent: The agent with LLM
|
|
llm: The LLM instance or model name
|
|
"""
|
|
self.content = content
|
|
self.agent = agent
|
|
self.model = model
|
|
self.llm = llm or (agent.function_calling_llm or agent.llm if agent else None)
|
|
|
|
with suppress_warnings():
|
|
import instructor
|
|
from litellm import completion
|
|
|
|
self._client = instructor.from_litellm(completion)
|
|
|
|
def to_json(self) -> str:
|
|
"""Convert the structured output to JSON format.
|
|
|
|
Returns:
|
|
JSON string representation of the structured output
|
|
"""
|
|
pydantic_model = self.to_pydantic()
|
|
return pydantic_model.model_dump_json(indent=2)
|
|
|
|
def to_pydantic(self) -> T:
|
|
"""Generate structured output using the specified Pydantic model.
|
|
|
|
Returns:
|
|
Instance of the specified Pydantic model with structured data
|
|
|
|
Raises:
|
|
ValueError: If LLM is not provided or invalid
|
|
"""
|
|
messages: list[LLMMessage] = [{"role": "user", "content": self.content}]
|
|
|
|
if not _is_valid_llm(self.llm):
|
|
raise ValueError(
|
|
"LLM must be provided and have a model attribute or be a string"
|
|
)
|
|
|
|
if isinstance(self.llm, str):
|
|
model_name = self.llm
|
|
else:
|
|
model_name = self.llm.model
|
|
|
|
return self._client.chat.completions.create(
|
|
model=model_name, response_model=self.model, messages=messages
|
|
)
|