Files
crewAI/src/crewai/knowledge/source/base_knowledge_source.py
Lorenze Jay c6a6c918e0 added knowledge to agent level (#1655)
* added knowledge to agent level

* linted

* added doc

* added from suggestions

* added test

* fixes from discussion

* fix docs

* fix test

* rm cassette for knowledge_sources test as its a mock and update agent doc string

* fix test

* rm unused

* linted
2024-11-27 11:33:07 -08:00

50 lines
1.6 KiB
Python

from abc import ABC, abstractmethod
from typing import List, Dict, Any, Optional
import numpy as np
from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
class BaseKnowledgeSource(BaseModel, ABC):
"""Abstract base class for knowledge sources."""
chunk_size: int = 4000
chunk_overlap: int = 200
chunks: List[str] = Field(default_factory=list)
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
metadata: Dict[str, Any] = Field(default_factory=dict)
collection_name: Optional[str] = Field(default=None)
@abstractmethod
def load_content(self) -> Dict[Any, str]:
"""Load and preprocess content from the source."""
pass
@abstractmethod
def add(self) -> None:
"""Process content, chunk it, compute embeddings, and save them."""
pass
def get_embeddings(self) -> List[np.ndarray]:
"""Return the list of embeddings for the chunks."""
return self.chunk_embeddings
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]
def save_documents(self, metadata: Dict[str, Any]):
"""
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks, metadata)