mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
- Added support for client_params in the GeminiCompletion class to allow for additional client configuration. - Refactored client initialization to use a dedicated method for retrieving client parameters, improving code organization and clarity. - Introduced comprehensive test cases to validate the functionality of the GeminiCompletion class, ensuring proper handling of tool use and parameter management.
645 lines
20 KiB
Python
645 lines
20 KiB
Python
import os
|
|
import sys
|
|
import types
|
|
from unittest.mock import patch, MagicMock
|
|
import pytest
|
|
|
|
from crewai.llm import LLM
|
|
from crewai.crew import Crew
|
|
from crewai.agent import Agent
|
|
from crewai.task import Task
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def mock_anthropic_api_key():
|
|
"""Automatically mock ANTHROPIC_API_KEY for all tests in this module."""
|
|
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
|
yield
|
|
|
|
|
|
def test_gemini_completion_is_used_when_google_provider():
|
|
"""
|
|
Test that GeminiCompletion from completion.py is used when LLM uses provider 'google'
|
|
"""
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
assert llm.__class__.__name__ == "GeminiCompletion"
|
|
assert llm.provider == "google"
|
|
assert llm.model == "gemini-2.0-flash-001"
|
|
|
|
|
|
def test_gemini_completion_is_used_when_gemini_provider():
|
|
"""
|
|
Test that GeminiCompletion is used when provider is 'gemini'
|
|
"""
|
|
llm = LLM(model="gemini/gemini-2.0-flash-001")
|
|
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm, GeminiCompletion)
|
|
assert llm.provider == "gemini"
|
|
assert llm.model == "gemini-2.0-flash-001"
|
|
|
|
|
|
|
|
|
|
def test_gemini_tool_use_conversation_flow():
|
|
"""
|
|
Test that the Gemini completion properly handles tool use conversation flow
|
|
"""
|
|
from unittest.mock import Mock, patch
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
|
|
# Create GeminiCompletion instance
|
|
completion = GeminiCompletion(model="gemini-2.0-flash-001")
|
|
|
|
# Mock tool function
|
|
def mock_weather_tool(location: str) -> str:
|
|
return f"The weather in {location} is sunny and 75°F"
|
|
|
|
available_functions = {"get_weather": mock_weather_tool}
|
|
|
|
# Mock the Google Gemini client responses
|
|
with patch.object(completion.client.models, 'generate_content') as mock_generate:
|
|
# Mock function call in response
|
|
mock_function_call = Mock()
|
|
mock_function_call.name = "get_weather"
|
|
mock_function_call.args = {"location": "San Francisco"}
|
|
|
|
mock_part = Mock()
|
|
mock_part.function_call = mock_function_call
|
|
|
|
mock_content = Mock()
|
|
mock_content.parts = [mock_part]
|
|
|
|
mock_candidate = Mock()
|
|
mock_candidate.content = mock_content
|
|
|
|
mock_response = Mock()
|
|
mock_response.candidates = [mock_candidate]
|
|
mock_response.text = "Based on the weather data, it's a beautiful day in San Francisco with sunny skies and 75°F temperature."
|
|
mock_response.usage_metadata = Mock()
|
|
mock_response.usage_metadata.prompt_token_count = 100
|
|
mock_response.usage_metadata.candidates_token_count = 50
|
|
mock_response.usage_metadata.total_token_count = 150
|
|
|
|
mock_generate.return_value = mock_response
|
|
|
|
# Test the call
|
|
messages = [{"role": "user", "content": "What's the weather like in San Francisco?"}]
|
|
result = completion.call(
|
|
messages=messages,
|
|
available_functions=available_functions
|
|
)
|
|
|
|
# Verify the tool was executed and returned the result
|
|
assert result == "The weather in San Francisco is sunny and 75°F"
|
|
|
|
# Verify that the API was called
|
|
assert mock_generate.called
|
|
|
|
|
|
def test_gemini_completion_module_is_imported():
|
|
"""
|
|
Test that the completion module is properly imported when using Google provider
|
|
"""
|
|
module_name = "crewai.llms.providers.gemini.completion"
|
|
|
|
# Remove module from cache if it exists
|
|
if module_name in sys.modules:
|
|
del sys.modules[module_name]
|
|
|
|
# Create LLM instance - this should trigger the import
|
|
LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Verify the module was imported
|
|
assert module_name in sys.modules
|
|
completion_mod = sys.modules[module_name]
|
|
assert isinstance(completion_mod, types.ModuleType)
|
|
|
|
# Verify the class exists in the module
|
|
assert hasattr(completion_mod, 'GeminiCompletion')
|
|
|
|
|
|
def test_fallback_to_litellm_when_native_gemini_fails():
|
|
"""
|
|
Test that LLM falls back to LiteLLM when native Gemini completion fails
|
|
"""
|
|
# Mock the _get_native_provider to return a failing class
|
|
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
|
|
|
|
class FailingCompletion:
|
|
def __init__(self, *args, **kwargs):
|
|
raise Exception("Native Google Gen AI SDK failed")
|
|
|
|
mock_get_provider.return_value = FailingCompletion
|
|
|
|
# This should fall back to LiteLLM
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Check that it's using LiteLLM
|
|
assert hasattr(llm, 'is_litellm')
|
|
assert llm.is_litellm == True
|
|
|
|
|
|
def test_gemini_completion_initialization_parameters():
|
|
"""
|
|
Test that GeminiCompletion is initialized with correct parameters
|
|
"""
|
|
llm = LLM(
|
|
model="google/gemini-2.0-flash-001",
|
|
temperature=0.7,
|
|
max_output_tokens=2000,
|
|
top_p=0.9,
|
|
top_k=40,
|
|
api_key="test-key"
|
|
)
|
|
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm, GeminiCompletion)
|
|
assert llm.model == "gemini-2.0-flash-001"
|
|
assert llm.temperature == 0.7
|
|
assert llm.max_output_tokens == 2000
|
|
assert llm.top_p == 0.9
|
|
assert llm.top_k == 40
|
|
|
|
|
|
def test_gemini_specific_parameters():
|
|
"""
|
|
Test Gemini-specific parameters like stop_sequences, streaming, and safety settings
|
|
"""
|
|
safety_settings = {
|
|
"HARM_CATEGORY_HARASSMENT": "BLOCK_MEDIUM_AND_ABOVE",
|
|
"HARM_CATEGORY_HATE_SPEECH": "BLOCK_MEDIUM_AND_ABOVE"
|
|
}
|
|
|
|
llm = LLM(
|
|
model="google/gemini-2.0-flash-001",
|
|
stop_sequences=["Human:", "Assistant:"],
|
|
stream=True,
|
|
safety_settings=safety_settings,
|
|
project="test-project",
|
|
location="us-central1"
|
|
)
|
|
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm, GeminiCompletion)
|
|
assert llm.stop_sequences == ["Human:", "Assistant:"]
|
|
assert llm.stream == True
|
|
assert llm.safety_settings == safety_settings
|
|
assert llm.project == "test-project"
|
|
assert llm.location == "us-central1"
|
|
|
|
|
|
def test_gemini_completion_call():
|
|
"""
|
|
Test that GeminiCompletion call method works
|
|
"""
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Mock the call method on the instance
|
|
with patch.object(llm, 'call', return_value="Hello! I'm Gemini, ready to help.") as mock_call:
|
|
result = llm.call("Hello, how are you?")
|
|
|
|
assert result == "Hello! I'm Gemini, ready to help."
|
|
mock_call.assert_called_once_with("Hello, how are you?")
|
|
|
|
|
|
def test_gemini_completion_called_during_crew_execution():
|
|
"""
|
|
Test that GeminiCompletion.call is actually invoked when running a crew
|
|
"""
|
|
# Create the LLM instance first
|
|
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Mock the call method on the specific instance
|
|
with patch.object(gemini_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
|
|
|
|
# Create agent with explicit LLM configuration
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find population info",
|
|
backstory="You research populations.",
|
|
llm=gemini_llm,
|
|
)
|
|
|
|
task = Task(
|
|
description="Find Tokyo population",
|
|
expected_output="Population number",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = crew.kickoff()
|
|
|
|
# Verify mock was called
|
|
assert mock_call.called
|
|
assert "14 million" in str(result)
|
|
|
|
|
|
def test_gemini_completion_call_arguments():
|
|
"""
|
|
Test that GeminiCompletion.call is invoked with correct arguments
|
|
"""
|
|
# Create LLM instance first
|
|
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Mock the instance method
|
|
with patch.object(gemini_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed successfully."
|
|
|
|
agent = Agent(
|
|
role="Test Agent",
|
|
goal="Complete a simple task",
|
|
backstory="You are a test agent.",
|
|
llm=gemini_llm # Use same instance
|
|
)
|
|
|
|
task = Task(
|
|
description="Say hello world",
|
|
expected_output="Hello world",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
# Verify call was made
|
|
assert mock_call.called
|
|
|
|
# Check the arguments passed to the call method
|
|
call_args = mock_call.call_args
|
|
assert call_args is not None
|
|
|
|
# The first argument should be the messages
|
|
messages = call_args[0][0] # First positional argument
|
|
assert isinstance(messages, (str, list))
|
|
|
|
# Verify that the task description appears in the messages
|
|
if isinstance(messages, str):
|
|
assert "hello world" in messages.lower()
|
|
elif isinstance(messages, list):
|
|
message_content = str(messages).lower()
|
|
assert "hello world" in message_content
|
|
|
|
|
|
def test_multiple_gemini_calls_in_crew():
|
|
"""
|
|
Test that GeminiCompletion.call is invoked multiple times for multiple tasks
|
|
"""
|
|
# Create LLM instance first
|
|
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Mock the instance method
|
|
with patch.object(gemini_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed."
|
|
|
|
agent = Agent(
|
|
role="Multi-task Agent",
|
|
goal="Complete multiple tasks",
|
|
backstory="You can handle multiple tasks.",
|
|
llm=gemini_llm # Use same instance
|
|
)
|
|
|
|
task1 = Task(
|
|
description="First task",
|
|
expected_output="First result",
|
|
agent=agent,
|
|
)
|
|
|
|
task2 = Task(
|
|
description="Second task",
|
|
expected_output="Second result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(
|
|
agents=[agent],
|
|
tasks=[task1, task2]
|
|
)
|
|
crew.kickoff()
|
|
|
|
# Verify multiple calls were made
|
|
assert mock_call.call_count >= 2 # At least one call per task
|
|
|
|
# Verify each call had proper arguments
|
|
for call in mock_call.call_args_list:
|
|
assert len(call[0]) > 0 # Has positional arguments
|
|
messages = call[0][0]
|
|
assert messages is not None
|
|
|
|
|
|
def test_gemini_completion_with_tools():
|
|
"""
|
|
Test that GeminiCompletion.call is invoked with tools when agent has tools
|
|
"""
|
|
from crewai.tools import tool
|
|
|
|
@tool
|
|
def sample_tool(query: str) -> str:
|
|
"""A sample tool for testing"""
|
|
return f"Tool result for: {query}"
|
|
|
|
# Create LLM instance first
|
|
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Mock the instance method
|
|
with patch.object(gemini_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed with tools."
|
|
|
|
agent = Agent(
|
|
role="Tool User",
|
|
goal="Use tools to complete tasks",
|
|
backstory="You can use tools.",
|
|
llm=gemini_llm, # Use same instance
|
|
tools=[sample_tool]
|
|
)
|
|
|
|
task = Task(
|
|
description="Use the sample tool",
|
|
expected_output="Tool usage result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
assert mock_call.called
|
|
|
|
call_args = mock_call.call_args
|
|
call_kwargs = call_args[1] if len(call_args) > 1 else {}
|
|
|
|
if 'tools' in call_kwargs:
|
|
assert call_kwargs['tools'] is not None
|
|
assert len(call_kwargs['tools']) > 0
|
|
|
|
|
|
def test_gemini_raises_error_when_model_not_supported():
|
|
"""Test that GeminiCompletion raises ValueError when model not supported"""
|
|
|
|
# Mock the Google client to raise an error
|
|
with patch('crewai.llms.providers.gemini.completion.genai') as mock_genai:
|
|
mock_client = MagicMock()
|
|
mock_genai.Client.return_value = mock_client
|
|
|
|
# Mock the error that Google would raise for unsupported models
|
|
from google.genai.errors import ClientError # type: ignore
|
|
mock_client.models.generate_content.side_effect = ClientError(
|
|
code=404,
|
|
response_json={
|
|
'error': {
|
|
'code': 404,
|
|
'message': 'models/model-doesnt-exist is not found for API version v1beta, or is not supported for generateContent.',
|
|
'status': 'NOT_FOUND'
|
|
}
|
|
}
|
|
)
|
|
|
|
llm = LLM(model="google/model-doesnt-exist")
|
|
|
|
with pytest.raises(Exception): # Should raise some error for unsupported model
|
|
llm.call("Hello")
|
|
|
|
|
|
def test_gemini_vertex_ai_setup():
|
|
"""
|
|
Test that Vertex AI configuration is properly handled
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"GOOGLE_CLOUD_PROJECT": "test-project",
|
|
"GOOGLE_CLOUD_LOCATION": "us-west1"
|
|
}):
|
|
llm = LLM(
|
|
model="google/gemini-2.0-flash-001",
|
|
project="test-project",
|
|
location="us-west1"
|
|
)
|
|
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm, GeminiCompletion)
|
|
|
|
assert llm.project == "test-project"
|
|
assert llm.location == "us-west1"
|
|
|
|
|
|
def test_gemini_api_key_configuration():
|
|
"""
|
|
Test that API key configuration works for both GOOGLE_API_KEY and GEMINI_API_KEY
|
|
"""
|
|
# Test with GOOGLE_API_KEY
|
|
with patch.dict(os.environ, {"GOOGLE_API_KEY": "test-google-key"}):
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm, GeminiCompletion)
|
|
assert llm.api_key == "test-google-key"
|
|
|
|
# Test with GEMINI_API_KEY
|
|
with patch.dict(os.environ, {"GEMINI_API_KEY": "test-gemini-key"}, clear=True):
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
assert isinstance(llm, GeminiCompletion)
|
|
assert llm.api_key == "test-gemini-key"
|
|
|
|
|
|
def test_gemini_model_capabilities():
|
|
"""
|
|
Test that model capabilities are correctly identified
|
|
"""
|
|
# Test Gemini 2.0 model
|
|
llm_2_0 = LLM(model="google/gemini-2.0-flash-001")
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm_2_0, GeminiCompletion)
|
|
assert llm_2_0.is_gemini_2 == True
|
|
assert llm_2_0.supports_tools == True
|
|
|
|
# Test Gemini 1.5 model
|
|
llm_1_5 = LLM(model="google/gemini-1.5-pro")
|
|
assert isinstance(llm_1_5, GeminiCompletion)
|
|
assert llm_1_5.is_gemini_1_5 == True
|
|
assert llm_1_5.supports_tools == True
|
|
|
|
|
|
def test_gemini_generation_config():
|
|
"""
|
|
Test that generation config is properly prepared
|
|
"""
|
|
llm = LLM(
|
|
model="google/gemini-2.0-flash-001",
|
|
temperature=0.7,
|
|
top_p=0.9,
|
|
top_k=40,
|
|
max_output_tokens=1000
|
|
)
|
|
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm, GeminiCompletion)
|
|
|
|
# Test config preparation
|
|
config = llm._prepare_generation_config()
|
|
|
|
# Verify config has the expected parameters
|
|
assert hasattr(config, 'temperature') or 'temperature' in str(config)
|
|
assert hasattr(config, 'top_p') or 'top_p' in str(config)
|
|
assert hasattr(config, 'top_k') or 'top_k' in str(config)
|
|
assert hasattr(config, 'max_output_tokens') or 'max_output_tokens' in str(config)
|
|
|
|
|
|
def test_gemini_model_detection():
|
|
"""
|
|
Test that various Gemini model formats are properly detected
|
|
"""
|
|
# Test Gemini model naming patterns that actually work with provider detection
|
|
gemini_test_cases = [
|
|
"google/gemini-2.0-flash-001",
|
|
"gemini/gemini-2.0-flash-001",
|
|
"google/gemini-1.5-pro",
|
|
"gemini/gemini-1.5-flash"
|
|
]
|
|
|
|
for model_name in gemini_test_cases:
|
|
llm = LLM(model=model_name)
|
|
from crewai.llms.providers.gemini.completion import GeminiCompletion
|
|
assert isinstance(llm, GeminiCompletion), f"Failed for model: {model_name}"
|
|
|
|
|
|
def test_gemini_supports_stop_words():
|
|
"""
|
|
Test that Gemini models support stop sequences
|
|
"""
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
assert llm.supports_stop_words() == True
|
|
|
|
|
|
def test_gemini_context_window_size():
|
|
"""
|
|
Test that Gemini models return correct context window sizes
|
|
"""
|
|
# Test Gemini 2.0 Flash
|
|
llm_2_0 = LLM(model="google/gemini-2.0-flash-001")
|
|
context_size_2_0 = llm_2_0.get_context_window_size()
|
|
assert context_size_2_0 > 500000 # Should be substantial (1M tokens)
|
|
|
|
# Test Gemini 1.5 Pro
|
|
llm_1_5 = LLM(model="google/gemini-1.5-pro")
|
|
context_size_1_5 = llm_1_5.get_context_window_size()
|
|
assert context_size_1_5 > 1000000 # Should be very large (2M tokens)
|
|
|
|
|
|
def test_gemini_message_formatting():
|
|
"""
|
|
Test that messages are properly formatted for Gemini API
|
|
"""
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Test message formatting
|
|
test_messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Hello"},
|
|
{"role": "assistant", "content": "Hi there!"},
|
|
{"role": "user", "content": "How are you?"}
|
|
]
|
|
|
|
formatted_contents, system_instruction = llm._format_messages_for_gemini(test_messages)
|
|
|
|
# System message should be extracted
|
|
assert system_instruction == "You are a helpful assistant."
|
|
|
|
# Remaining messages should be Content objects
|
|
assert len(formatted_contents) >= 3 # Should have user, model, user messages
|
|
|
|
# First content should be user role
|
|
assert formatted_contents[0].role == "user"
|
|
# Second should be model (converted from assistant)
|
|
assert formatted_contents[1].role == "model"
|
|
|
|
|
|
def test_gemini_streaming_parameter():
|
|
"""
|
|
Test that streaming parameter is properly handled
|
|
"""
|
|
# Test non-streaming
|
|
llm_no_stream = LLM(model="google/gemini-2.0-flash-001", stream=False)
|
|
assert llm_no_stream.stream == False
|
|
|
|
# Test streaming
|
|
llm_stream = LLM(model="google/gemini-2.0-flash-001", stream=True)
|
|
assert llm_stream.stream == True
|
|
|
|
|
|
def test_gemini_tool_conversion():
|
|
"""
|
|
Test that tools are properly converted to Gemini format
|
|
"""
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Mock tool in CrewAI format
|
|
crewai_tools = [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "test_tool",
|
|
"description": "A test tool",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"query": {"type": "string", "description": "Search query"}
|
|
},
|
|
"required": ["query"]
|
|
}
|
|
}
|
|
}]
|
|
|
|
# Test tool conversion
|
|
gemini_tools = llm._convert_tools_for_interference(crewai_tools)
|
|
|
|
assert len(gemini_tools) == 1
|
|
# Gemini tools are Tool objects with function_declarations
|
|
assert hasattr(gemini_tools[0], 'function_declarations')
|
|
assert len(gemini_tools[0].function_declarations) == 1
|
|
|
|
func_decl = gemini_tools[0].function_declarations[0]
|
|
assert func_decl.name == "test_tool"
|
|
assert func_decl.description == "A test tool"
|
|
|
|
|
|
def test_gemini_environment_variable_api_key():
|
|
"""
|
|
Test that Google API key is properly loaded from environment
|
|
"""
|
|
with patch.dict(os.environ, {"GOOGLE_API_KEY": "test-google-key"}):
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
assert llm.client is not None
|
|
assert hasattr(llm.client, 'models')
|
|
assert llm.api_key == "test-google-key"
|
|
|
|
|
|
def test_gemini_token_usage_tracking():
|
|
"""
|
|
Test that token usage is properly tracked for Gemini responses
|
|
"""
|
|
llm = LLM(model="google/gemini-2.0-flash-001")
|
|
|
|
# Mock the Gemini response with usage information
|
|
with patch.object(llm.client.models, 'generate_content') as mock_generate:
|
|
mock_response = MagicMock()
|
|
mock_response.text = "test response"
|
|
mock_response.candidates = []
|
|
mock_response.usage_metadata = MagicMock(
|
|
prompt_token_count=50,
|
|
candidates_token_count=25,
|
|
total_token_count=75
|
|
)
|
|
mock_generate.return_value = mock_response
|
|
|
|
result = llm.call("Hello")
|
|
|
|
# Verify the response
|
|
assert result == "test response"
|
|
|
|
# Verify token usage was extracted
|
|
usage = llm._extract_token_usage(mock_response)
|
|
assert usage["prompt_token_count"] == 50
|
|
assert usage["candidates_token_count"] == 25
|
|
assert usage["total_token_count"] == 75
|
|
assert usage["total_tokens"] == 75
|