mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 17:18:29 +00:00
48 lines
1.7 KiB
Python
48 lines
1.7 KiB
Python
import os
|
|
|
|
from typing import List, Optional, Dict, Any
|
|
from pydantic import BaseModel, ConfigDict, Field
|
|
|
|
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
|
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
|
from crewai.utilities.logger import Logger
|
|
from crewai.utilities.constants import DEFAULT_SCORE_THRESHOLD
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" # removes logging from fastembed
|
|
|
|
|
|
class Knowledge(BaseModel):
|
|
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
|
embedder_config: Optional[Dict[str, Any]] = None
|
|
|
|
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None, **data):
|
|
super().__init__(**data)
|
|
self.storage = KnowledgeStorage(embedder_config=embedder_config or None)
|
|
|
|
try:
|
|
for source in self.sources:
|
|
source.add()
|
|
except Exception as e:
|
|
Logger(verbose=True).log(
|
|
"warning",
|
|
f"Failed to init knowledge: {e}",
|
|
color="yellow",
|
|
)
|
|
|
|
def query(
|
|
self, query: List[str], limit: int = 3, preference: Optional[str] = None
|
|
) -> List[Dict[str, Any]]:
|
|
"""
|
|
Query across all knowledge sources to find the most relevant information.
|
|
Returns the top_k most relevant chunks.
|
|
"""
|
|
|
|
results = self.storage.search(
|
|
query,
|
|
limit,
|
|
filter={"preference": preference} if preference else None,
|
|
score_threshold=DEFAULT_SCORE_THRESHOLD,
|
|
)
|
|
return results
|