Files
crewAI/tests/utilities/test_converter.py
Brandon Hancock (bhancock_ai) e2ce65fc5b Check the right property for tool calling (#2160)
* Check the right property

* Fix failing tests

* Update cassettes

* Update cassettes again

* Update cassettes again 2

* Update cassettes again 3

* fix other test that fails in ci/cd

* Fix issues pointed out by lorenze
2025-02-20 12:12:52 -05:00

612 lines
18 KiB
Python

import json
import os
from typing import Dict, List, Optional
from unittest.mock import MagicMock, Mock, patch
import pytest
from pydantic import BaseModel
from crewai.llm import LLM
from crewai.utilities.converter import (
Converter,
ConverterError,
convert_to_model,
convert_with_instructions,
create_converter,
generate_model_description,
get_conversion_instructions,
handle_partial_json,
validate_model,
)
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
# Sample Pydantic models for testing
class EmailResponse(BaseModel):
previous_message_content: str
class EmailResponses(BaseModel):
responses: list[EmailResponse]
class SimpleModel(BaseModel):
name: str
age: int
class NestedModel(BaseModel):
id: int
data: SimpleModel
class Address(BaseModel):
street: str
city: str
zip_code: str
class Person(BaseModel):
name: str
age: int
address: Address
class CustomConverter(Converter):
pass
# Fixtures
@pytest.fixture
def mock_agent():
agent = Mock()
agent.function_calling_llm = None
agent.llm = Mock()
return agent
# Tests for convert_to_model
def test_convert_to_model_with_valid_json():
result = '{"name": "John", "age": 30}'
output = convert_to_model(result, SimpleModel, None, None)
assert isinstance(output, SimpleModel)
assert output.name == "John"
assert output.age == 30
def test_convert_to_model_with_invalid_json():
result = '{"name": "John", "age": "thirty"}'
with patch("crewai.utilities.converter.handle_partial_json") as mock_handle:
mock_handle.return_value = "Fallback result"
output = convert_to_model(result, SimpleModel, None, None)
assert output == "Fallback result"
def test_convert_to_model_with_no_model():
result = "Plain text"
output = convert_to_model(result, None, None, None)
assert output == "Plain text"
def test_convert_to_model_with_special_characters():
json_string_test = """
{
"responses": [
{
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
}
]
}
"""
output = convert_to_model(json_string_test, EmailResponses, None, None)
assert isinstance(output, EmailResponses)
assert len(output.responses) == 1
assert (
output.responses[0].previous_message_content
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
)
def test_convert_to_model_with_escaped_special_characters():
json_string_test = json.dumps(
{
"responses": [
{
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
}
]
}
)
output = convert_to_model(json_string_test, EmailResponses, None, None)
assert isinstance(output, EmailResponses)
assert len(output.responses) == 1
assert (
output.responses[0].previous_message_content
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
)
def test_convert_to_model_with_multiple_special_characters():
json_string_test = """
{
"responses": [
{
"previous_message_content": "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
}
]
}
"""
output = convert_to_model(json_string_test, EmailResponses, None, None)
assert isinstance(output, EmailResponses)
assert len(output.responses) == 1
assert (
output.responses[0].previous_message_content
== "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
)
# Tests for validate_model
def test_validate_model_pydantic_output():
result = '{"name": "Alice", "age": 25}'
output = validate_model(result, SimpleModel, False)
assert isinstance(output, SimpleModel)
assert output.name == "Alice"
assert output.age == 25
def test_validate_model_json_output():
result = '{"name": "Bob", "age": 40}'
output = validate_model(result, SimpleModel, True)
assert isinstance(output, dict)
assert output == {"name": "Bob", "age": 40}
# Tests for handle_partial_json
def test_handle_partial_json_with_valid_partial():
result = 'Some text {"name": "Charlie", "age": 35} more text'
output = handle_partial_json(result, SimpleModel, False, None)
assert isinstance(output, SimpleModel)
assert output.name == "Charlie"
assert output.age == 35
def test_handle_partial_json_with_invalid_partial(mock_agent):
result = "No valid JSON here"
with patch("crewai.utilities.converter.convert_with_instructions") as mock_convert:
mock_convert.return_value = "Converted result"
output = handle_partial_json(result, SimpleModel, False, mock_agent)
assert output == "Converted result"
# Tests for convert_with_instructions
@patch("crewai.utilities.converter.create_converter")
@patch("crewai.utilities.converter.get_conversion_instructions")
def test_convert_with_instructions_success(
mock_get_instructions, mock_create_converter, mock_agent
):
mock_get_instructions.return_value = "Instructions"
mock_converter = Mock()
mock_converter.to_pydantic.return_value = SimpleModel(name="David", age=50)
mock_create_converter.return_value = mock_converter
result = "Some text to convert"
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
assert isinstance(output, SimpleModel)
assert output.name == "David"
assert output.age == 50
@patch("crewai.utilities.converter.create_converter")
@patch("crewai.utilities.converter.get_conversion_instructions")
def test_convert_with_instructions_failure(
mock_get_instructions, mock_create_converter, mock_agent
):
mock_get_instructions.return_value = "Instructions"
mock_converter = Mock()
mock_converter.to_pydantic.return_value = ConverterError("Conversion failed")
mock_create_converter.return_value = mock_converter
result = "Some text to convert"
with patch("crewai.utilities.converter.Printer") as mock_printer:
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
assert output == result
mock_printer.return_value.print.assert_called_once()
# Tests for get_conversion_instructions
def test_get_conversion_instructions_gpt():
llm = LLM(model="gpt-4o-mini")
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
supports_function_calling.return_value = True
instructions = get_conversion_instructions(SimpleModel, llm)
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
expected_instructions = (
"Please convert the following text into valid JSON.\n\n"
"Output ONLY the valid JSON and nothing else.\n\n"
"The JSON must follow this schema exactly:\n```json\n"
f"{model_schema}\n```"
)
assert instructions == expected_instructions
def test_get_conversion_instructions_non_gpt():
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
with patch.object(LLM, "supports_function_calling", return_value=False):
instructions = get_conversion_instructions(SimpleModel, llm)
assert '"name": str' in instructions
assert '"age": int' in instructions
# Tests for is_gpt
def test_supports_function_calling_true():
llm = LLM(model="gpt-4o")
assert llm.supports_function_calling() is True
def test_supports_function_calling_false():
llm = LLM(model="non-existent-model")
assert llm.supports_function_calling() is False
def test_create_converter_with_mock_agent():
mock_agent = MagicMock()
mock_agent.get_output_converter.return_value = MagicMock(spec=Converter)
converter = create_converter(
agent=mock_agent,
llm=Mock(),
text="Sample",
model=SimpleModel,
instructions="Convert",
)
assert isinstance(converter, Converter)
mock_agent.get_output_converter.assert_called_once()
def test_create_converter_with_custom_converter():
converter = create_converter(
converter_cls=CustomConverter,
llm=LLM(model="gpt-4o-mini"),
text="Sample",
model=SimpleModel,
instructions="Convert",
)
assert isinstance(converter, CustomConverter)
def test_create_converter_fails_without_agent_or_converter_cls():
with pytest.raises(
ValueError, match="Either agent or converter_cls must be provided"
):
create_converter(
llm=Mock(), text="Sample", model=SimpleModel, instructions="Convert"
)
def test_generate_model_description_simple_model():
description = generate_model_description(SimpleModel)
expected_description = '{\n "name": str,\n "age": int\n}'
assert description == expected_description
def test_generate_model_description_nested_model():
description = generate_model_description(NestedModel)
expected_description = (
'{\n "id": int,\n "data": {\n "name": str,\n "age": int\n}\n}'
)
assert description == expected_description
def test_generate_model_description_optional_field():
class ModelWithOptionalField(BaseModel):
name: Optional[str]
age: int
description = generate_model_description(ModelWithOptionalField)
expected_description = '{\n "name": Optional[str],\n "age": int\n}'
assert description == expected_description
def test_generate_model_description_list_field():
class ModelWithListField(BaseModel):
items: List[int]
description = generate_model_description(ModelWithListField)
expected_description = '{\n "items": List[int]\n}'
assert description == expected_description
def test_generate_model_description_dict_field():
class ModelWithDictField(BaseModel):
attributes: Dict[str, int]
description = generate_model_description(ModelWithDictField)
expected_description = '{\n "attributes": Dict[str, int]\n}'
assert description == expected_description
@pytest.mark.vcr(filter_headers=["authorization"])
def test_convert_with_instructions():
llm = LLM(model="gpt-4o-mini")
sample_text = "Name: Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
# Act
output = converter.to_pydantic()
# Assert
assert isinstance(output, SimpleModel)
assert output.name == "Alice"
assert output.age == 30
# Skip tests that call external APIs when running in CI/CD
skip_external_api = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
)
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
def test_converter_with_llama3_2_model():
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
def test_converter_with_llama3_1_model():
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
# Skip tests that call external APIs when running in CI/CD
skip_external_api = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
)
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_nested_model():
llm = LLM(model="gpt-4o-mini")
sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345"
instructions = get_conversion_instructions(Person, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=Person,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, Person)
assert output.name == "John Doe"
assert output.age == 30
assert isinstance(output.address, Address)
assert output.address.street == "123 Main St"
assert output.address.city == "Anytown"
assert output.address.zip_code == "12345"
# Tests for error handling
def test_converter_error_handling():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = "Invalid JSON"
sample_text = "Name: Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
# Tests for retry logic
def test_converter_retry_logic():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.side_effect = [
"Invalid JSON",
"Still invalid",
'{"name": "Retry Alice", "age": 30}',
]
sample_text = "Name: Retry Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
max_attempts=3,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Retry Alice"
assert output.age == 30
assert llm.call.call_count == 3
# Tests for optional fields
def test_converter_with_optional_fields():
class OptionalModel(BaseModel):
name: str
age: Optional[int]
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
# Simulate the LLM's response with 'age' explicitly set to null
llm.call.return_value = '{"name": "Bob", "age": null}'
sample_text = "Name: Bob, age: None"
instructions = get_conversion_instructions(OptionalModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=OptionalModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, OptionalModel)
assert output.name == "Bob"
assert output.age is None
# Tests for list fields
def test_converter_with_list_field():
class ListModel(BaseModel):
items: List[int]
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"items": [1, 2, 3]}'
sample_text = "Items: 1, 2, 3"
instructions = get_conversion_instructions(ListModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=ListModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, ListModel)
assert output.items == [1, 2, 3]
# Tests for enums
from enum import Enum
def test_converter_with_enum():
class Color(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"
class EnumModel(BaseModel):
name: str
color: Color
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"name": "Alice", "color": "red"}'
sample_text = "Name: Alice, Color: Red"
instructions = get_conversion_instructions(EnumModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=EnumModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, EnumModel)
assert output.name == "Alice"
assert output.color == Color.RED
# Tests for ambiguous input
def test_converter_with_ambiguous_input():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}'
sample_text = "Charlie is thirty years old"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
assert "failed to convert text into a pydantic model" in str(exc_info.value).lower()
# Tests for function calling support
def test_converter_with_function_calling():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = True
instructor = Mock()
instructor.to_pydantic.return_value = SimpleModel(name="Eve", age=35)
converter = Converter(
llm=llm,
text="Name: Eve, Age: 35",
model=SimpleModel,
instructions="Convert this text.",
)
converter._create_instructor = Mock(return_value=instructor)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Eve"
assert output.age == 35
instructor.to_pydantic.assert_called_once()
def test_generate_model_description_union_field():
class UnionModel(BaseModel):
field: int | str | None
description = generate_model_description(UnionModel)
expected_description = '{\n "field": int | str | None\n}'
assert description == expected_description