Files
crewAI/crewai/agent.py
2023-10-29 19:51:59 -03:00

48 lines
1.6 KiB
Python

"""Generic agent."""
from typing import List, Any
from pydantic import BaseModel, Field
from langchain.tools import Tool
from langchain.agents import AgentExecutor
from langchain.chat_models import ChatOpenAI as OpenAI
from langchain.tools.render import render_text_description
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActSingleInputOutputParser
from .prompts import AGENT_EXECUTION_PROMPT
class Agent(BaseModel):
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
tools: List[Tool] = Field(description="Tools at agents disposal")
llm: str = Field(description="LLM of the agent", default=OpenAI(
temperature=0.7,
model="gpt-4",
verbose=True
))
def execute(self, task: str) -> str:
prompt = AGENT_EXECUTION_PROMPT.partial(
tools=render_text_description(self.tools),
tool_names=self.__tools_names(),
backstory=self.backstory,
role=self.role,
goal=self.goal,
)
return self.__run(task, prompt, self.tools)
def __run(self, input: str, prompt: str, tools: List[Tool]) -> str:
chat_with_bind = self.llm.bind(stop=["\nObservation"])
agent = {
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps'])
} | prompt | chat_with_bind | ReActSingleInputOutputParser()
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True)
return agent_executor.invoke({"input": input})['output']
def __tools_names(self) -> str:
return ", ".join([t.name for t in self.tools])