mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 16:18:30 +00:00
48 lines
1.6 KiB
Python
48 lines
1.6 KiB
Python
"""Generic agent."""
|
|
|
|
from typing import List, Any
|
|
from pydantic import BaseModel, Field
|
|
|
|
from langchain.tools import Tool
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.chat_models import ChatOpenAI as OpenAI
|
|
from langchain.tools.render import render_text_description
|
|
from langchain.agents.format_scratchpad import format_log_to_str
|
|
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
|
|
|
from .prompts import AGENT_EXECUTION_PROMPT
|
|
|
|
class Agent(BaseModel):
|
|
role: str = Field(description="Role of the agent")
|
|
goal: str = Field(description="Objective of the agent")
|
|
backstory: str = Field(description="Backstory of the agent")
|
|
tools: List[Tool] = Field(description="Tools at agents disposal")
|
|
llm: str = Field(description="LLM of the agent", default=OpenAI(
|
|
temperature=0.7,
|
|
model="gpt-4",
|
|
verbose=True
|
|
))
|
|
|
|
def execute(self, task: str) -> str:
|
|
prompt = AGENT_EXECUTION_PROMPT.partial(
|
|
tools=render_text_description(self.tools),
|
|
tool_names=self.__tools_names(),
|
|
backstory=self.backstory,
|
|
role=self.role,
|
|
goal=self.goal,
|
|
)
|
|
return self.__run(task, prompt, self.tools)
|
|
|
|
def __run(self, input: str, prompt: str, tools: List[Tool]) -> str:
|
|
chat_with_bind = self.llm.bind(stop=["\nObservation"])
|
|
agent = {
|
|
"input": lambda x: x["input"],
|
|
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps'])
|
|
} | prompt | chat_with_bind | ReActSingleInputOutputParser()
|
|
|
|
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True)
|
|
return agent_executor.invoke({"input": input})['output']
|
|
|
|
def __tools_names(self) -> str:
|
|
return ", ".join([t.name for t in self.tools])
|
|
|