mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 23:58:34 +00:00
* ruff linted * using native sdks with litellm fallback * drop exa * drop print on completion * Refactor LLM and utility functions for type consistency - Updated `max_tokens` parameter in `LLM` class to accept `float` in addition to `int`. - Modified `create_llm` function to ensure consistent type hints and return types, now returning `LLM | BaseLLM | None`. - Adjusted type hints for various parameters in `create_llm` and `_llm_via_environment_or_fallback` functions for improved clarity and type safety. - Enhanced test cases to reflect changes in type handling and ensure proper instantiation of LLM instances. * fix agent_tests * fix litellm tests and usagemetrics fix * drop print * Refactor LLM event handling and improve test coverage - Removed commented-out event emission for LLM call failures in `llm.py`. - Added `from_agent` parameter to `CrewAgentExecutor` for better context in LLM responses. - Enhanced test for LLM call failure to simulate OpenAI API failure and updated assertions for clarity. - Updated agent and task ID assertions in tests to ensure they are consistently treated as strings. * fix test_converter * fixed tests/agents/test_agent.py * Refactor LLM context length exception handling and improve provider integration - Renamed `LLMContextLengthExceededException` to `LLMContextLengthExceededExceptionError` for clarity and consistency. - Updated LLM class to pass the provider parameter correctly during initialization. - Enhanced error handling in various LLM provider implementations to raise the new exception type. - Adjusted tests to reflect the updated exception name and ensure proper error handling in context length scenarios. * Enhance LLM context window handling across providers - Introduced CONTEXT_WINDOW_USAGE_RATIO to adjust context window sizes dynamically for Anthropic, Azure, Gemini, and OpenAI LLMs. - Added validation for context window sizes in Azure and Gemini providers to ensure they fall within acceptable limits. - Updated context window size calculations to use the new ratio, improving consistency and adaptability across different models. - Removed hardcoded context window sizes in favor of ratio-based calculations for better flexibility. * fix test agent again * fix test agent * feat: add native LLM providers for Anthropic, Azure, and Gemini - Introduced new completion implementations for Anthropic, Azure, and Gemini, integrating their respective SDKs. - Added utility functions for tool validation and extraction to support function calling across LLM providers. - Enhanced context window management and token usage extraction for each provider. - Created a common utility module for shared functionality among LLM providers. * chore: update dependencies and improve context management - Removed direct dependency on `litellm` from the main dependencies and added it under extras for better modularity. - Updated the `litellm` dependency specification to allow for greater flexibility in versioning. - Refactored context length exception handling across various LLM providers to use a consistent error class. - Enhanced platform-specific dependency markers for NVIDIA packages to ensure compatibility across different systems. * refactor(tests): update LLM instantiation to include is_litellm flag in test cases - Modified multiple test cases in test_llm.py to set the is_litellm parameter to True when instantiating the LLM class. - This change ensures that the tests are aligned with the latest LLM configuration requirements and improves consistency across test scenarios. - Adjusted relevant assertions and comments to reflect the updated LLM behavior. * linter * linted * revert constants * fix(tests): correct type hint in expected model description - Updated the expected description in the test_generate_model_description_dict_field function to use 'Dict' instead of 'dict' for consistency with type hinting conventions. - This change ensures that the test accurately reflects the expected output format for model descriptions. * refactor(llm): enhance LLM instantiation and error handling - Updated the LLM class to include validation for the model parameter, ensuring it is a non-empty string. - Improved error handling by logging warnings when the native SDK fails, allowing for a fallback to LiteLLM. - Adjusted the instantiation of LLM in test cases to consistently include the is_litellm flag, aligning with recent changes in LLM configuration. - Modified relevant tests to reflect these updates, ensuring better coverage and accuracy in testing scenarios. * fixed test * refactor(llm): enhance token usage tracking and add copy methods - Updated the LLM class to track token usage and log callbacks in streaming mode, improving monitoring capabilities. - Introduced shallow and deep copy methods for the LLM instance, allowing for better management of LLM configurations and parameters. - Adjusted test cases to instantiate LLM with the is_litellm flag, ensuring alignment with recent changes in LLM configuration. * refactor(tests): reorganize imports and enhance error messages in test cases - Cleaned up import statements in test_crew.py for better organization and readability. - Enhanced error messages in test cases to use `re.escape` for improved regex matching, ensuring more robust error handling. - Adjusted comments for clarity and consistency across test scenarios. - Ensured that all necessary modules are imported correctly to avoid potential runtime issues.
600 lines
17 KiB
Python
600 lines
17 KiB
Python
# Tests for enums
|
|
from enum import Enum
|
|
import json
|
|
import os
|
|
from unittest.mock import MagicMock, Mock, patch
|
|
|
|
from crewai.llm import LLM
|
|
from crewai.utilities.converter import (
|
|
Converter,
|
|
ConverterError,
|
|
convert_to_model,
|
|
convert_with_instructions,
|
|
create_converter,
|
|
generate_model_description,
|
|
get_conversion_instructions,
|
|
handle_partial_json,
|
|
validate_model,
|
|
)
|
|
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
|
from pydantic import BaseModel
|
|
import pytest
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def vcr_config(request) -> dict:
|
|
return {
|
|
"cassette_library_dir": os.path.join(os.path.dirname(__file__), "cassettes"),
|
|
}
|
|
|
|
|
|
# Sample Pydantic models for testing
|
|
class EmailResponse(BaseModel):
|
|
previous_message_content: str
|
|
|
|
|
|
class EmailResponses(BaseModel):
|
|
responses: list[EmailResponse]
|
|
|
|
|
|
class SimpleModel(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
|
|
class NestedModel(BaseModel):
|
|
id: int
|
|
data: SimpleModel
|
|
|
|
|
|
class Address(BaseModel):
|
|
street: str
|
|
city: str
|
|
zip_code: str
|
|
|
|
|
|
class Person(BaseModel):
|
|
name: str
|
|
age: int
|
|
address: Address
|
|
|
|
|
|
class CustomConverter(Converter):
|
|
pass
|
|
|
|
|
|
# Fixtures
|
|
@pytest.fixture
|
|
def mock_agent():
|
|
agent = Mock()
|
|
agent.function_calling_llm = None
|
|
agent.llm = Mock()
|
|
return agent
|
|
|
|
|
|
# Tests for convert_to_model
|
|
def test_convert_to_model_with_valid_json():
|
|
result = '{"name": "John", "age": 30}'
|
|
output = convert_to_model(result, SimpleModel, None, None)
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "John"
|
|
assert output.age == 30
|
|
|
|
|
|
def test_convert_to_model_with_invalid_json():
|
|
result = '{"name": "John", "age": "thirty"}'
|
|
with patch("crewai.utilities.converter.handle_partial_json") as mock_handle:
|
|
mock_handle.return_value = "Fallback result"
|
|
output = convert_to_model(result, SimpleModel, None, None)
|
|
assert output == "Fallback result"
|
|
|
|
|
|
def test_convert_to_model_with_no_model():
|
|
result = "Plain text"
|
|
output = convert_to_model(result, None, None, None)
|
|
assert output == "Plain text"
|
|
|
|
|
|
def test_convert_to_model_with_special_characters():
|
|
json_string_test = """
|
|
{
|
|
"responses": [
|
|
{
|
|
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
}
|
|
]
|
|
}
|
|
"""
|
|
output = convert_to_model(json_string_test, EmailResponses, None, None)
|
|
assert isinstance(output, EmailResponses)
|
|
assert len(output.responses) == 1
|
|
assert (
|
|
output.responses[0].previous_message_content
|
|
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
)
|
|
|
|
|
|
def test_convert_to_model_with_escaped_special_characters():
|
|
json_string_test = json.dumps(
|
|
{
|
|
"responses": [
|
|
{
|
|
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
}
|
|
]
|
|
}
|
|
)
|
|
output = convert_to_model(json_string_test, EmailResponses, None, None)
|
|
assert isinstance(output, EmailResponses)
|
|
assert len(output.responses) == 1
|
|
assert (
|
|
output.responses[0].previous_message_content
|
|
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
)
|
|
|
|
|
|
def test_convert_to_model_with_multiple_special_characters():
|
|
json_string_test = """
|
|
{
|
|
"responses": [
|
|
{
|
|
"previous_message_content": "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
|
|
}
|
|
]
|
|
}
|
|
"""
|
|
output = convert_to_model(json_string_test, EmailResponses, None, None)
|
|
assert isinstance(output, EmailResponses)
|
|
assert len(output.responses) == 1
|
|
assert (
|
|
output.responses[0].previous_message_content
|
|
== "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
|
|
)
|
|
|
|
|
|
# Tests for validate_model
|
|
def test_validate_model_pydantic_output():
|
|
result = '{"name": "Alice", "age": 25}'
|
|
output = validate_model(result, SimpleModel, False)
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice"
|
|
assert output.age == 25
|
|
|
|
|
|
def test_validate_model_json_output():
|
|
result = '{"name": "Bob", "age": 40}'
|
|
output = validate_model(result, SimpleModel, True)
|
|
assert isinstance(output, dict)
|
|
assert output == {"name": "Bob", "age": 40}
|
|
|
|
|
|
# Tests for handle_partial_json
|
|
def test_handle_partial_json_with_valid_partial():
|
|
result = 'Some text {"name": "Charlie", "age": 35} more text'
|
|
output = handle_partial_json(result, SimpleModel, False, None)
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Charlie"
|
|
assert output.age == 35
|
|
|
|
|
|
def test_handle_partial_json_with_invalid_partial(mock_agent):
|
|
result = "No valid JSON here"
|
|
with patch("crewai.utilities.converter.convert_with_instructions") as mock_convert:
|
|
mock_convert.return_value = "Converted result"
|
|
output = handle_partial_json(result, SimpleModel, False, mock_agent)
|
|
assert output == "Converted result"
|
|
|
|
|
|
# Tests for convert_with_instructions
|
|
@patch("crewai.utilities.converter.create_converter")
|
|
@patch("crewai.utilities.converter.get_conversion_instructions")
|
|
def test_convert_with_instructions_success(
|
|
mock_get_instructions, mock_create_converter, mock_agent
|
|
):
|
|
mock_get_instructions.return_value = "Instructions"
|
|
mock_converter = Mock()
|
|
mock_converter.to_pydantic.return_value = SimpleModel(name="David", age=50)
|
|
mock_create_converter.return_value = mock_converter
|
|
|
|
result = "Some text to convert"
|
|
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
|
|
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "David"
|
|
assert output.age == 50
|
|
|
|
|
|
@patch("crewai.utilities.converter.create_converter")
|
|
@patch("crewai.utilities.converter.get_conversion_instructions")
|
|
def test_convert_with_instructions_failure(
|
|
mock_get_instructions, mock_create_converter, mock_agent
|
|
):
|
|
mock_get_instructions.return_value = "Instructions"
|
|
mock_converter = Mock()
|
|
mock_converter.to_pydantic.return_value = ConverterError("Conversion failed")
|
|
mock_create_converter.return_value = mock_converter
|
|
|
|
result = "Some text to convert"
|
|
with patch("crewai.utilities.converter.Printer") as mock_printer:
|
|
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
|
|
assert output == result
|
|
mock_printer.return_value.print.assert_called_once()
|
|
|
|
|
|
# Tests for get_conversion_instructions
|
|
def test_get_conversion_instructions_gpt():
|
|
llm = LLM(model="gpt-4o-mini")
|
|
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
|
|
supports_function_calling.return_value = True
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
|
|
expected_instructions = (
|
|
"Please convert the following text into valid JSON.\n\n"
|
|
"Output ONLY the valid JSON and nothing else.\n\n"
|
|
"The JSON must follow this schema exactly:\n```json\n"
|
|
f"{model_schema}\n```"
|
|
)
|
|
assert instructions == expected_instructions
|
|
|
|
|
|
def test_get_conversion_instructions_non_gpt():
|
|
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
|
with patch.object(LLM, "supports_function_calling", return_value=False):
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
assert '"name": str' in instructions
|
|
assert '"age": int' in instructions
|
|
|
|
|
|
# Tests for is_gpt
|
|
def test_supports_function_calling_true():
|
|
llm = LLM(model="gpt-4o")
|
|
assert llm.supports_function_calling() is True
|
|
|
|
|
|
def test_supports_function_calling_false():
|
|
llm = LLM(model="non-existent-model", is_litellm=True)
|
|
assert llm.supports_function_calling() is False
|
|
|
|
|
|
def test_create_converter_with_mock_agent():
|
|
mock_agent = MagicMock()
|
|
mock_agent.get_output_converter.return_value = MagicMock(spec=Converter)
|
|
|
|
converter = create_converter(
|
|
agent=mock_agent,
|
|
llm=Mock(),
|
|
text="Sample",
|
|
model=SimpleModel,
|
|
instructions="Convert",
|
|
)
|
|
|
|
assert isinstance(converter, Converter)
|
|
mock_agent.get_output_converter.assert_called_once()
|
|
|
|
|
|
def test_create_converter_with_custom_converter():
|
|
converter = create_converter(
|
|
converter_cls=CustomConverter,
|
|
llm=LLM(model="gpt-4o-mini"),
|
|
text="Sample",
|
|
model=SimpleModel,
|
|
instructions="Convert",
|
|
)
|
|
|
|
assert isinstance(converter, CustomConverter)
|
|
|
|
|
|
def test_create_converter_fails_without_agent_or_converter_cls():
|
|
with pytest.raises(
|
|
ValueError, match="Either agent or converter_cls must be provided"
|
|
):
|
|
create_converter(
|
|
llm=Mock(), text="Sample", model=SimpleModel, instructions="Convert"
|
|
)
|
|
|
|
|
|
def test_generate_model_description_simple_model():
|
|
description = generate_model_description(SimpleModel)
|
|
expected_description = '{\n "name": str,\n "age": int\n}'
|
|
assert description == expected_description
|
|
|
|
|
|
def test_generate_model_description_nested_model():
|
|
description = generate_model_description(NestedModel)
|
|
expected_description = (
|
|
'{\n "id": int,\n "data": {\n "name": str,\n "age": int\n}\n}'
|
|
)
|
|
assert description == expected_description
|
|
|
|
|
|
def test_generate_model_description_optional_field():
|
|
class ModelWithOptionalField(BaseModel):
|
|
name: str
|
|
age: int | None
|
|
|
|
description = generate_model_description(ModelWithOptionalField)
|
|
expected_description = '{\n "name": str,\n "age": int | None\n}'
|
|
assert description == expected_description
|
|
|
|
|
|
def test_generate_model_description_list_field():
|
|
class ModelWithListField(BaseModel):
|
|
items: list[int]
|
|
|
|
description = generate_model_description(ModelWithListField)
|
|
expected_description = '{\n "items": List[int]\n}'
|
|
assert description == expected_description
|
|
|
|
|
|
def test_generate_model_description_dict_field():
|
|
class ModelWithDictField(BaseModel):
|
|
attributes: dict[str, int]
|
|
|
|
description = generate_model_description(ModelWithDictField)
|
|
expected_description = '{\n "attributes": Dict[str, int]\n}'
|
|
assert description == expected_description
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
def test_convert_with_instructions():
|
|
llm = LLM(model="gpt-4o-mini")
|
|
sample_text = "Name: Alice, Age: 30"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
# Act
|
|
output = converter.to_pydantic()
|
|
|
|
# Assert
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice"
|
|
assert output.age == 30
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
def test_converter_with_llama3_2_model():
|
|
llm = LLM(model="openrouter/meta-llama/llama-3.2-3b-instruct")
|
|
sample_text = "Name: Alice Llama, Age: 30"
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
output = converter.to_pydantic()
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice Llama"
|
|
assert output.age == 30
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
def test_converter_with_llama3_1_model():
|
|
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
|
sample_text = "Name: Alice Llama, Age: 30"
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
output = converter.to_pydantic()
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice Llama"
|
|
assert output.age == 30
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
def test_converter_with_nested_model():
|
|
llm = LLM(model="gpt-4o-mini")
|
|
sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345"
|
|
|
|
instructions = get_conversion_instructions(Person, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=Person,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, Person)
|
|
assert output.name == "John Doe"
|
|
assert output.age == 30
|
|
assert isinstance(output.address, Address)
|
|
assert output.address.street == "123 Main St"
|
|
assert output.address.city == "Anytown"
|
|
assert output.address.zip_code == "12345"
|
|
|
|
|
|
# Tests for error handling
|
|
def test_converter_error_handling():
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = "Invalid JSON"
|
|
sample_text = "Name: Alice, Age: 30"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
with pytest.raises(ConverterError) as exc_info:
|
|
converter.to_pydantic()
|
|
|
|
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
|
|
|
|
|
|
# Tests for retry logic
|
|
def test_converter_retry_logic():
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.side_effect = [
|
|
"Invalid JSON",
|
|
"Still invalid",
|
|
'{"name": "Retry Alice", "age": 30}',
|
|
]
|
|
sample_text = "Name: Retry Alice, Age: 30"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
max_attempts=3,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Retry Alice"
|
|
assert output.age == 30
|
|
assert llm.call.call_count == 3
|
|
|
|
|
|
# Tests for optional fields
|
|
def test_converter_with_optional_fields():
|
|
class OptionalModel(BaseModel):
|
|
name: str
|
|
age: int | None
|
|
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
# Simulate the LLM's response with 'age' explicitly set to null
|
|
llm.call.return_value = '{"name": "Bob", "age": null}'
|
|
sample_text = "Name: Bob, age: None"
|
|
|
|
instructions = get_conversion_instructions(OptionalModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=OptionalModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, OptionalModel)
|
|
assert output.name == "Bob"
|
|
assert output.age is None
|
|
|
|
|
|
# Tests for list fields
|
|
def test_converter_with_list_field():
|
|
class ListModel(BaseModel):
|
|
items: list[int]
|
|
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = '{"items": [1, 2, 3]}'
|
|
sample_text = "Items: 1, 2, 3"
|
|
|
|
instructions = get_conversion_instructions(ListModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=ListModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, ListModel)
|
|
assert output.items == [1, 2, 3]
|
|
|
|
|
|
def test_converter_with_enum():
|
|
class Color(Enum):
|
|
RED = "red"
|
|
GREEN = "green"
|
|
BLUE = "blue"
|
|
|
|
class EnumModel(BaseModel):
|
|
name: str
|
|
color: Color
|
|
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = '{"name": "Alice", "color": "red"}'
|
|
sample_text = "Name: Alice, Color: Red"
|
|
|
|
instructions = get_conversion_instructions(EnumModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=EnumModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, EnumModel)
|
|
assert output.name == "Alice"
|
|
assert output.color == Color.RED
|
|
|
|
|
|
# Tests for ambiguous input
|
|
def test_converter_with_ambiguous_input():
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}'
|
|
sample_text = "Charlie is thirty years old"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
with pytest.raises(ConverterError) as exc_info:
|
|
converter.to_pydantic()
|
|
|
|
assert "failed to convert text into a pydantic model" in str(exc_info.value).lower()
|
|
|
|
|
|
# Tests for function calling support
|
|
def test_converter_with_function_calling():
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = True
|
|
|
|
instructor = Mock()
|
|
instructor.to_pydantic.return_value = SimpleModel(name="Eve", age=35)
|
|
|
|
converter = Converter(
|
|
llm=llm,
|
|
text="Name: Eve, Age: 35",
|
|
model=SimpleModel,
|
|
instructions="Convert this text.",
|
|
)
|
|
converter._create_instructor = Mock(return_value=instructor)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Eve"
|
|
assert output.age == 35
|
|
instructor.to_pydantic.assert_called_once()
|
|
|
|
|
|
def test_generate_model_description_union_field():
|
|
class UnionModel(BaseModel):
|
|
field: int | str | None
|
|
|
|
description = generate_model_description(UnionModel)
|
|
expected_description = '{\n "field": int | str | None\n}'
|
|
assert description == expected_description
|