mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 23:58:34 +00:00
427 lines
15 KiB
Python
427 lines
15 KiB
Python
import asyncio
|
|
import inspect
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Generic,
|
|
List,
|
|
Optional,
|
|
Set,
|
|
Type,
|
|
TypeVar,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from blinker import Signal
|
|
from pydantic import BaseModel, ValidationError
|
|
|
|
from crewai.flow.flow_events import (
|
|
FlowFinishedEvent,
|
|
FlowStartedEvent,
|
|
MethodExecutionFinishedEvent,
|
|
MethodExecutionStartedEvent,
|
|
)
|
|
from crewai.flow.flow_visualizer import plot_flow
|
|
from crewai.flow.utils import get_possible_return_constants
|
|
from crewai.telemetry import Telemetry
|
|
|
|
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
|
|
|
|
|
|
def start(condition=None):
|
|
def decorator(func):
|
|
func.__is_start_method__ = True
|
|
if condition is not None:
|
|
if isinstance(condition, str):
|
|
func.__trigger_methods__ = [condition]
|
|
func.__condition_type__ = "OR"
|
|
elif (
|
|
isinstance(condition, dict)
|
|
and "type" in condition
|
|
and "methods" in condition
|
|
):
|
|
func.__trigger_methods__ = condition["methods"]
|
|
func.__condition_type__ = condition["type"]
|
|
elif callable(condition) and hasattr(condition, "__name__"):
|
|
func.__trigger_methods__ = [condition.__name__]
|
|
func.__condition_type__ = "OR"
|
|
else:
|
|
raise ValueError(
|
|
"Condition must be a method, string, or a result of or_() or and_()"
|
|
)
|
|
return func
|
|
|
|
return decorator
|
|
|
|
|
|
def listen(condition):
|
|
def decorator(func):
|
|
if isinstance(condition, str):
|
|
func.__trigger_methods__ = [condition]
|
|
func.__condition_type__ = "OR"
|
|
elif (
|
|
isinstance(condition, dict)
|
|
and "type" in condition
|
|
and "methods" in condition
|
|
):
|
|
func.__trigger_methods__ = condition["methods"]
|
|
func.__condition_type__ = condition["type"]
|
|
elif callable(condition) and hasattr(condition, "__name__"):
|
|
func.__trigger_methods__ = [condition.__name__]
|
|
func.__condition_type__ = "OR"
|
|
else:
|
|
raise ValueError(
|
|
"Condition must be a method, string, or a result of or_() or and_()"
|
|
)
|
|
return func
|
|
|
|
return decorator
|
|
|
|
|
|
def router(method):
|
|
def decorator(func):
|
|
func.__is_router__ = True
|
|
func.__router_for__ = method.__name__
|
|
return func
|
|
|
|
return decorator
|
|
|
|
|
|
def or_(*conditions):
|
|
methods = []
|
|
for condition in conditions:
|
|
if isinstance(condition, dict) and "methods" in condition:
|
|
methods.extend(condition["methods"])
|
|
elif isinstance(condition, str):
|
|
methods.append(condition)
|
|
elif callable(condition):
|
|
methods.append(getattr(condition, "__name__", repr(condition)))
|
|
else:
|
|
raise ValueError("Invalid condition in or_()")
|
|
return {"type": "OR", "methods": methods}
|
|
|
|
|
|
def and_(*conditions):
|
|
methods = []
|
|
for condition in conditions:
|
|
if isinstance(condition, dict) and "methods" in condition:
|
|
methods.extend(condition["methods"])
|
|
elif isinstance(condition, str):
|
|
methods.append(condition)
|
|
elif callable(condition):
|
|
methods.append(getattr(condition, "__name__", repr(condition)))
|
|
else:
|
|
raise ValueError("Invalid condition in and_()")
|
|
return {"type": "AND", "methods": methods}
|
|
|
|
|
|
class FlowMeta(type):
|
|
def __new__(mcs, name, bases, dct):
|
|
cls = super().__new__(mcs, name, bases, dct)
|
|
|
|
start_methods = []
|
|
listeners = {}
|
|
routers = {}
|
|
router_paths = {}
|
|
|
|
for attr_name, attr_value in dct.items():
|
|
if hasattr(attr_value, "__is_start_method__"):
|
|
start_methods.append(attr_name)
|
|
if hasattr(attr_value, "__trigger_methods__"):
|
|
methods = attr_value.__trigger_methods__
|
|
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
|
listeners[attr_name] = (condition_type, methods)
|
|
elif hasattr(attr_value, "__trigger_methods__"):
|
|
methods = attr_value.__trigger_methods__
|
|
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
|
listeners[attr_name] = (condition_type, methods)
|
|
|
|
elif hasattr(attr_value, "__is_router__"):
|
|
routers[attr_value.__router_for__] = attr_name
|
|
possible_returns = get_possible_return_constants(attr_value)
|
|
if possible_returns:
|
|
router_paths[attr_name] = possible_returns
|
|
|
|
# Register router as a listener to its triggering method
|
|
trigger_method_name = attr_value.__router_for__
|
|
methods = [trigger_method_name]
|
|
condition_type = "OR"
|
|
listeners[attr_name] = (condition_type, methods)
|
|
|
|
setattr(cls, "_start_methods", start_methods)
|
|
setattr(cls, "_listeners", listeners)
|
|
setattr(cls, "_routers", routers)
|
|
setattr(cls, "_router_paths", router_paths)
|
|
|
|
return cls
|
|
|
|
|
|
class Flow(Generic[T], metaclass=FlowMeta):
|
|
_telemetry = Telemetry()
|
|
|
|
_start_methods: List[str] = []
|
|
_listeners: Dict[str, tuple[str, List[str]]] = {}
|
|
_routers: Dict[str, str] = {}
|
|
_router_paths: Dict[str, List[str]] = {}
|
|
initial_state: Union[Type[T], T, None] = None
|
|
event_emitter = Signal("event_emitter")
|
|
|
|
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
|
|
class _FlowGeneric(cls): # type: ignore
|
|
_initial_state_T = item # type: ignore
|
|
|
|
_FlowGeneric.__name__ = f"{cls.__name__}[{item.__name__}]"
|
|
return _FlowGeneric
|
|
|
|
def __init__(self) -> None:
|
|
self._methods: Dict[str, Callable] = {}
|
|
self._state: T = self._create_initial_state()
|
|
self._method_execution_counts: Dict[str, int] = {}
|
|
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
|
self._method_outputs: List[Any] = [] # List to store all method outputs
|
|
|
|
self._telemetry.flow_creation_span(self.__class__.__name__)
|
|
|
|
for method_name in dir(self):
|
|
if callable(getattr(self, method_name)) and not method_name.startswith(
|
|
"__"
|
|
):
|
|
self._methods[method_name] = getattr(self, method_name)
|
|
|
|
def _create_initial_state(self) -> T:
|
|
if self.initial_state is None and hasattr(self, "_initial_state_T"):
|
|
return self._initial_state_T() # type: ignore
|
|
if self.initial_state is None:
|
|
return {} # type: ignore
|
|
elif isinstance(self.initial_state, type):
|
|
return self.initial_state()
|
|
else:
|
|
return self.initial_state
|
|
|
|
@property
|
|
def state(self) -> T:
|
|
return self._state
|
|
|
|
@property
|
|
def method_outputs(self) -> List[Any]:
|
|
"""Returns the list of all outputs from executed methods."""
|
|
return self._method_outputs
|
|
|
|
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
|
"""
|
|
Initializes or updates the state with the provided inputs.
|
|
|
|
Args:
|
|
inputs: Dictionary of inputs to initialize or update the state.
|
|
|
|
Raises:
|
|
ValueError: If inputs do not match the structured state model.
|
|
TypeError: If state is neither a BaseModel instance nor a dictionary.
|
|
"""
|
|
if isinstance(self._state, BaseModel):
|
|
# Structured state management
|
|
try:
|
|
# Define a function to create the dynamic class
|
|
def create_model_with_extra_forbid(
|
|
base_model: Type[BaseModel],
|
|
) -> Type[BaseModel]:
|
|
class ModelWithExtraForbid(base_model): # type: ignore
|
|
model_config = base_model.model_config.copy()
|
|
model_config["extra"] = "forbid"
|
|
|
|
return ModelWithExtraForbid
|
|
|
|
# Create the dynamic class
|
|
ModelWithExtraForbid = create_model_with_extra_forbid(
|
|
self._state.__class__
|
|
)
|
|
|
|
# Create a new instance using the combined state and inputs
|
|
self._state = cast(
|
|
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
|
)
|
|
|
|
except ValidationError as e:
|
|
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
|
elif isinstance(self._state, dict):
|
|
# Unstructured state management
|
|
self._state.update(inputs)
|
|
else:
|
|
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
|
|
|
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
|
"""
|
|
Starts the execution of the flow synchronously.
|
|
|
|
Args:
|
|
inputs: Optional dictionary of inputs to initialize or update the state.
|
|
|
|
Returns:
|
|
The final output from the flow execution.
|
|
"""
|
|
self.event_emitter.send(
|
|
self,
|
|
event=FlowStartedEvent(
|
|
type="flow_started",
|
|
flow_name=self.__class__.__name__,
|
|
),
|
|
)
|
|
|
|
if inputs is not None:
|
|
self._initialize_state(inputs)
|
|
return asyncio.run(self.kickoff_async())
|
|
|
|
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
|
"""
|
|
Starts the execution of the flow asynchronously.
|
|
|
|
Args:
|
|
inputs: Optional dictionary of inputs to initialize or update the state.
|
|
|
|
Returns:
|
|
The final output from the flow execution.
|
|
"""
|
|
if not self._start_methods:
|
|
raise ValueError("No start method defined")
|
|
|
|
self._telemetry.flow_execution_span(
|
|
self.__class__.__name__, list(self._methods.keys())
|
|
)
|
|
|
|
# Create tasks for all start methods
|
|
tasks = [
|
|
self._execute_start_method(start_method)
|
|
for start_method in self._start_methods
|
|
]
|
|
|
|
# Run all start methods concurrently
|
|
await asyncio.gather(*tasks)
|
|
|
|
# Determine the final output (from the last executed method)
|
|
final_output = self._method_outputs[-1] if self._method_outputs else None
|
|
|
|
self.event_emitter.send(
|
|
self,
|
|
event=FlowFinishedEvent(
|
|
type="flow_finished",
|
|
flow_name=self.__class__.__name__,
|
|
result=final_output,
|
|
),
|
|
)
|
|
|
|
return final_output
|
|
|
|
async def _execute_start_method(self, start_method_name: str) -> None:
|
|
result = await self._execute_method(
|
|
start_method_name, self._methods[start_method_name]
|
|
)
|
|
await self._execute_listeners(start_method_name, result)
|
|
|
|
async def _execute_method(
|
|
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
|
|
) -> Any:
|
|
result = (
|
|
await method(*args, **kwargs)
|
|
if asyncio.iscoroutinefunction(method)
|
|
else method(*args, **kwargs)
|
|
)
|
|
self._method_outputs.append(result) # Store the output
|
|
|
|
# Track method execution counts
|
|
self._method_execution_counts[method_name] = (
|
|
self._method_execution_counts.get(method_name, 0) + 1
|
|
)
|
|
|
|
return result
|
|
|
|
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
|
|
listener_tasks = []
|
|
|
|
if trigger_method in self._routers:
|
|
router_method = self._methods[self._routers[trigger_method]]
|
|
path = await self._execute_method(
|
|
self._routers[trigger_method], router_method
|
|
)
|
|
trigger_method = path
|
|
|
|
for listener_name, (condition_type, methods) in self._listeners.items():
|
|
if condition_type == "OR":
|
|
if trigger_method in methods:
|
|
# Schedule the listener without preventing re-execution
|
|
listener_tasks.append(
|
|
self._execute_single_listener(listener_name, result)
|
|
)
|
|
elif condition_type == "AND":
|
|
# Initialize pending methods for this listener if not already done
|
|
if listener_name not in self._pending_and_listeners:
|
|
self._pending_and_listeners[listener_name] = set(methods)
|
|
# Remove the trigger method from pending methods
|
|
self._pending_and_listeners[listener_name].discard(trigger_method)
|
|
if not self._pending_and_listeners[listener_name]:
|
|
# All required methods have been executed
|
|
listener_tasks.append(
|
|
self._execute_single_listener(listener_name, result)
|
|
)
|
|
# Reset pending methods for this listener
|
|
self._pending_and_listeners.pop(listener_name, None)
|
|
|
|
# Run all listener tasks concurrently and wait for them to complete
|
|
if listener_tasks:
|
|
await asyncio.gather(*listener_tasks)
|
|
|
|
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
|
|
try:
|
|
method = self._methods[listener_name]
|
|
|
|
self.event_emitter.send(
|
|
self,
|
|
event=MethodExecutionStartedEvent(
|
|
type="method_execution_started",
|
|
method_name=listener_name,
|
|
flow_name=self.__class__.__name__,
|
|
),
|
|
)
|
|
|
|
sig = inspect.signature(method)
|
|
params = list(sig.parameters.values())
|
|
|
|
# Exclude 'self' parameter
|
|
method_params = [p for p in params if p.name != "self"]
|
|
|
|
if method_params:
|
|
# If listener expects parameters, pass the result
|
|
listener_result = await self._execute_method(
|
|
listener_name, method, result
|
|
)
|
|
else:
|
|
# If listener does not expect parameters, call without arguments
|
|
listener_result = await self._execute_method(listener_name, method)
|
|
|
|
self.event_emitter.send(
|
|
self,
|
|
event=MethodExecutionFinishedEvent(
|
|
type="method_execution_finished",
|
|
method_name=listener_name,
|
|
flow_name=self.__class__.__name__,
|
|
),
|
|
)
|
|
|
|
# Execute listeners of this listener
|
|
await self._execute_listeners(listener_name, listener_result)
|
|
except Exception as e:
|
|
print(
|
|
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
|
|
)
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
|
|
def plot(self, filename: str = "crewai_flow") -> None:
|
|
self._telemetry.flow_plotting_span(
|
|
self.__class__.__name__, list(self._methods.keys())
|
|
)
|
|
|
|
plot_flow(self, filename)
|