Files
crewAI/src/crewai/agents/crew_agent_executor.py
Lucas Gomide b7bf15681e feat: add capability to track LLM calls by task and agent (#3087)
* feat: add capability to track LLM calls by task and agent

This makes it possible to filter or scope LLM events by specific agents or tasks, which can be very useful for debugging or analytics in real-time application

* feat: add docs about LLM tracking by Agents and Tasks

* fix incompatible BaseLLM.call method signature

* feat: support to filter LLM Events from Lite Agent
2025-07-01 09:30:16 -04:00

464 lines
18 KiB
Python

from typing import Any, Callable, Dict, List, Optional, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.parser import (
AgentAction,
AgentFinish,
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.llm import BaseLLM
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_types import ToolResult
from crewai.utilities import I18N, Printer
from crewai.utilities.agent_utils import (
enforce_rpm_limit,
format_message_for_llm,
get_llm_response,
handle_agent_action_core,
handle_context_length,
handle_max_iterations_exceeded,
handle_output_parser_exception,
handle_unknown_error,
has_reached_max_iterations,
is_context_length_exceeded,
process_llm_response,
)
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.logger import Logger
from crewai.utilities.tool_utils import execute_tool_and_check_finality
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.utilities.events.agent_events import (
AgentLogsStartedEvent,
AgentLogsExecutionEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
class CrewAgentExecutor(CrewAgentExecutorMixin):
_logger: Logger = Logger()
def __init__(
self,
llm: Any,
task: Any,
crew: Any,
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: List[CrewStructuredTool],
tools_names: str,
stop_words: List[str],
tools_description: str,
tools_handler: ToolsHandler,
step_callback: Any = None,
original_tools: List[Any] = [],
function_calling_llm: Any = None,
respect_context_window: bool = False,
request_within_rpm_limit: Optional[Callable[[], bool]] = None,
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm: BaseLLM = llm
self.task = task
self.agent = agent
self.crew = crew
self.prompt = prompt
self.tools = tools
self.tools_names = tools_names
self.stop = stop_words
self.max_iter = max_iter
self.callbacks = callbacks
self._printer: Printer = Printer()
self.tools_handler = tools_handler
self.original_tools = original_tools
self.step_callback = step_callback
self.use_stop_words = self.llm.supports_stop_words()
self.tools_description = tools_description
self.function_calling_llm = function_calling_llm
self.respect_context_window = respect_context_window
self.request_within_rpm_limit = request_within_rpm_limit
self.ask_for_human_input = False
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.tool_name_to_tool_map: Dict[str, Union[CrewStructuredTool, BaseTool]] = {
tool.name: tool for tool in self.tools
}
existing_stop = self.llm.stop or []
self.llm.stop = list(
set(
existing_stop + self.stop
if isinstance(existing_stop, list)
else self.stop
)
)
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
self.messages.append(format_message_for_llm(system_prompt, role="system"))
self.messages.append(format_message_for_llm(user_prompt))
else:
user_prompt = self._format_prompt(self.prompt.get("prompt", ""), inputs)
self.messages.append(format_message_for_llm(user_prompt))
self._show_start_logs()
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
try:
formatted_answer = self._invoke_loop()
except AssertionError:
self._printer.print(
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
color="red",
)
raise
except Exception as e:
handle_unknown_error(self._printer, e)
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
else:
raise e
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
self._create_external_memory(formatted_answer)
return {"output": formatted_answer.output}
def _invoke_loop(self) -> AgentFinish:
"""
Main loop to invoke the agent's thought process until it reaches a conclusion
or the maximum number of iterations is reached.
"""
formatted_answer = None
while not isinstance(formatted_answer, AgentFinish):
try:
if has_reached_max_iterations(self.iterations, self.max_iter):
formatted_answer = handle_max_iterations_exceeded(
formatted_answer,
printer=self._printer,
i18n=self._i18n,
messages=self.messages,
llm=self.llm,
callbacks=self.callbacks,
)
enforce_rpm_limit(self.request_within_rpm_limit)
answer = get_llm_response(
llm=self.llm,
messages=self.messages,
callbacks=self.callbacks,
printer=self._printer,
from_task=self.task
)
formatted_answer = process_llm_response(answer, self.use_stop_words)
if isinstance(formatted_answer, AgentAction):
# Extract agent fingerprint if available
fingerprint_context = {}
if (
self.agent
and hasattr(self.agent, "security_config")
and hasattr(self.agent.security_config, "fingerprint")
):
fingerprint_context = {
"agent_fingerprint": str(
self.agent.security_config.fingerprint
)
}
tool_result = execute_tool_and_check_finality(
agent_action=formatted_answer,
fingerprint_context=fingerprint_context,
tools=self.tools,
i18n=self._i18n,
agent_key=self.agent.key if self.agent else None,
agent_role=self.agent.role if self.agent else None,
tools_handler=self.tools_handler,
task=self.task,
agent=self.agent,
function_calling_llm=self.function_calling_llm,
)
formatted_answer = self._handle_agent_action(
formatted_answer, tool_result
)
self._invoke_step_callback(formatted_answer)
self._append_message(formatted_answer.text, role="assistant")
except OutputParserException as e:
formatted_answer = handle_output_parser_exception(
e=e,
messages=self.messages,
iterations=self.iterations,
log_error_after=self.log_error_after,
printer=self._printer,
)
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
if is_context_length_exceeded(e):
handle_context_length(
respect_context_window=self.respect_context_window,
printer=self._printer,
messages=self.messages,
llm=self.llm,
callbacks=self.callbacks,
i18n=self._i18n,
)
continue
else:
handle_unknown_error(self._printer, e)
raise e
finally:
self.iterations += 1
# During the invoke loop, formatted_answer alternates between AgentAction
# (when the agent is using tools) and eventually becomes AgentFinish
# (when the agent reaches a final answer). This assertion confirms we've
# reached a final answer and helps type checking understand this transition.
assert isinstance(formatted_answer, AgentFinish)
self._show_logs(formatted_answer)
return formatted_answer
def _handle_agent_action(
self, formatted_answer: AgentAction, tool_result: ToolResult
) -> Union[AgentAction, AgentFinish]:
"""Handle the AgentAction, execute tools, and process the results."""
# Special case for add_image_tool
add_image_tool = self._i18n.tools("add_image")
if (
isinstance(add_image_tool, dict)
and formatted_answer.tool.casefold().strip()
== add_image_tool.get("name", "").casefold().strip()
):
self.messages.append({"role": "assistant", "content": tool_result.result})
return formatted_answer
return handle_agent_action_core(
formatted_answer=formatted_answer,
tool_result=tool_result,
messages=self.messages,
step_callback=self.step_callback,
show_logs=self._show_logs,
)
def _invoke_step_callback(self, formatted_answer) -> None:
"""Invoke the step callback if it exists."""
if self.step_callback:
self.step_callback(formatted_answer)
def _append_message(self, text: str, role: str = "assistant") -> None:
"""Append a message to the message list with the given role."""
self.messages.append(format_message_for_llm(text, role=role))
def _show_start_logs(self):
"""Show logs for the start of agent execution."""
if self.agent is None:
raise ValueError("Agent cannot be None")
crewai_event_bus.emit(
self.agent,
AgentLogsStartedEvent(
agent_role=self.agent.role,
task_description=(
getattr(self.task, "description") if self.task else "Not Found"
),
verbose=self.agent.verbose
or (hasattr(self, "crew") and getattr(self.crew, "verbose", False)),
),
)
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
"""Show logs for the agent's execution."""
if self.agent is None:
raise ValueError("Agent cannot be None")
crewai_event_bus.emit(
self.agent,
AgentLogsExecutionEvent(
agent_role=self.agent.role,
formatted_answer=formatted_answer,
verbose=self.agent.verbose
or (hasattr(self, "crew") and getattr(self.crew, "verbose", False)),
),
)
def _summarize_messages(self) -> None:
messages_groups = []
for message in self.messages:
content = message["content"]
cut_size = self.llm.get_context_window_size()
for i in range(0, len(content), cut_size):
messages_groups.append({"content": content[i : i + cut_size]})
summarized_contents = []
for group in messages_groups:
summary = self.llm.call(
[
format_message_for_llm(
self._i18n.slice("summarizer_system_message"), role="system"
),
format_message_for_llm(
self._i18n.slice("summarize_instruction").format(
group=group["content"]
),
),
],
callbacks=self.callbacks,
)
summarized_contents.append({"content": str(summary)})
merged_summary = " ".join(content["content"] for content in summarized_contents)
self.messages = [
format_message_for_llm(
self._i18n.slice("summary").format(merged_summary=merged_summary)
)
]
def _handle_crew_training_output(
self, result: AgentFinish, human_feedback: Optional[str] = None
) -> None:
"""Handle the process of saving training data."""
agent_id = str(self.agent.id) # type: ignore
train_iteration = (
getattr(self.crew, "_train_iteration", None) if self.crew else None
)
if train_iteration is None or not isinstance(train_iteration, int):
self._printer.print(
content="Invalid or missing train iteration. Cannot save training data.",
color="red",
)
return
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
training_data = training_handler.load() or {}
# Initialize or retrieve agent's training data
agent_training_data = training_data.get(agent_id, {})
if human_feedback is not None:
# Save initial output and human feedback
agent_training_data[train_iteration] = {
"initial_output": result.output,
"human_feedback": human_feedback,
}
else:
# Save improved output
if train_iteration in agent_training_data:
agent_training_data[train_iteration]["improved_output"] = result.output
else:
self._printer.print(
content=(
f"No existing training data for agent {agent_id} and iteration "
f"{train_iteration}. Cannot save improved output."
),
color="red",
)
return
# Update the training data and save
training_data[agent_id] = agent_training_data
training_handler.save(training_data)
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
prompt = prompt.replace("{input}", inputs["input"])
prompt = prompt.replace("{tool_names}", inputs["tool_names"])
prompt = prompt.replace("{tools}", inputs["tools"])
return prompt
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
"""Handle human feedback with different flows for training vs regular use.
Args:
formatted_answer: The initial AgentFinish result to get feedback on
Returns:
AgentFinish: The final answer after processing feedback
"""
human_feedback = self._ask_human_input(formatted_answer.output)
if self._is_training_mode():
return self._handle_training_feedback(formatted_answer, human_feedback)
return self._handle_regular_feedback(formatted_answer, human_feedback)
def _is_training_mode(self) -> bool:
"""Check if crew is in training mode."""
return bool(self.crew and self.crew._train)
def _handle_training_feedback(
self, initial_answer: AgentFinish, feedback: str
) -> AgentFinish:
"""Process feedback for training scenarios with single iteration."""
self._handle_crew_training_output(initial_answer, feedback)
self.messages.append(
format_message_for_llm(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
improved_answer = self._invoke_loop()
self._handle_crew_training_output(improved_answer)
self.ask_for_human_input = False
return improved_answer
def _handle_regular_feedback(
self, current_answer: AgentFinish, initial_feedback: str
) -> AgentFinish:
"""Process feedback for regular use with potential multiple iterations."""
feedback = initial_feedback
answer = current_answer
while self.ask_for_human_input:
# If the user provides a blank response, assume they are happy with the result
if feedback.strip() == "":
self.ask_for_human_input = False
else:
answer = self._process_feedback_iteration(feedback)
feedback = self._ask_human_input(answer.output)
return answer
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
"""Process a single feedback iteration."""
self.messages.append(
format_message_for_llm(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
return self._invoke_loop()
def _log_feedback_error(self, retry_count: int, error: Exception) -> None:
"""Log feedback processing errors."""
self._printer.print(
content=(
f"Error processing feedback: {error}. "
f"Retrying... ({retry_count + 1}/{MAX_LLM_RETRY})"
),
color="red",
)
def _log_max_retries_exceeded(self) -> None:
"""Log when max retries for feedback processing are exceeded."""
self._printer.print(
content=(
f"Failed to process feedback after {MAX_LLM_RETRY} attempts. "
"Ending feedback loop."
),
color="red",
)