Files
crewAI/src/crewai/memory/storage/rag_storage.py
Lorenze Jay be1b9a3994 Reset memory (#958)
* reseting memory on cli

* using storage.reset

* deleting memories on command

* added tests

* handle when no flags are used

* added docs
2024-07-18 13:29:42 -03:00

114 lines
3.5 KiB
Python

import contextlib
import io
import logging
import os
import shutil
from typing import Any, Dict, List, Optional
from embedchain import App
from embedchain.llm.base import BaseLlm
from embedchain.vectordb.chroma import InvalidDimensionException
from crewai.memory.storage.interface import Storage
from crewai.utilities.paths import db_storage_path
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with contextlib.redirect_stdout(io.StringIO()), contextlib.redirect_stderr(
io.StringIO()
), contextlib.suppress(UserWarning):
yield
logger.setLevel(original_level)
class FakeLLM(BaseLlm):
pass
class RAGStorage(Storage):
"""
Extends Storage to handle embeddings for memory entries, improving
search efficiency.
"""
def __init__(self, type, allow_reset=True, embedder_config=None, crew=None):
super().__init__()
if (
not os.getenv("OPENAI_API_KEY")
and not os.getenv("OPENAI_BASE_URL") == "https://api.openai.com/v1"
):
os.environ["OPENAI_API_KEY"] = "fake"
agents = crew.agents if crew else []
agents = [agent.role for agent in agents]
agents = "_".join(agents)
config = {
"app": {
"config": {"name": type, "collect_metrics": False, "log_level": "ERROR"}
},
"chunker": {
"chunk_size": 5000,
"chunk_overlap": 100,
"length_function": "len",
"min_chunk_size": 150,
},
"vectordb": {
"provider": "chroma",
"config": {
"collection_name": type,
"dir": f"{db_storage_path()}/{type}/{agents}",
"allow_reset": allow_reset,
},
},
}
if embedder_config:
config["embedder"] = embedder_config
self.type = type
self.app = App.from_config(config=config)
self.app.llm = FakeLLM()
if allow_reset:
self.app.reset()
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
self._generate_embedding(value, metadata)
def search( # type: ignore # BUG?: Signature of "search" incompatible with supertype "Storage"
self,
query: str,
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Any]:
with suppress_logging():
try:
results = (
self.app.search(query, limit, where=filter)
if filter
else self.app.search(query, limit)
)
except InvalidDimensionException:
self.app.reset()
return []
return [r for r in results if r["metadata"]["score"] >= score_threshold]
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> Any:
with suppress_logging():
self.app.add(text, data_type="text", metadata=metadata)
def reset(self) -> None:
try:
shutil.rmtree(f"{db_storage_path()}/{self.type}")
except Exception as e:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)