Files
crewAI/src/crewai/utilities/evaluators/crew_evaluator_handler.py
Devin AI f4efdc55e2 refactor: implement review suggestions
- Extract model conversion logic to _get_llm_instance helper method
- Improve error message clarity
- Simplify LLM instance creation in CrewEvaluator

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 22:52:13 +00:00

194 lines
9.0 KiB
Python

from collections import defaultdict
from typing import Union
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
class TaskEvaluationPydanticOutput(BaseModel):
quality: float = Field(
description="A score from 1 to 10 evaluating on completion, quality, and overall performance from the task_description and task_expected_output to the actual Task Output."
)
class CrewEvaluator:
"""
A class to evaluate the performance of the agents in the crew based on the tasks they have performed.
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
tasks_scores: defaultdict = defaultdict(list)
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, llm: Union[str, LLM]):
self.crew = crew
self.llm = LLM(model=llm) if isinstance(llm, str) else llm
self._telemetry = Telemetry()
self._setup_for_evaluating()
def _setup_for_evaluating(self) -> None:
"""Sets up the crew for evaluating."""
for task in self.crew.tasks:
task.callback = self.evaluate
def _evaluator_agent(self):
return Agent(
role="Task Execution Evaluator",
goal=(
"Your goal is to evaluate the performance of the agents in the crew based on the tasks they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.llm,
)
def _evaluation_task(
self, evaluator_agent: Agent, task_to_evaluate: Task, task_output: str
) -> Task:
return Task(
description=(
"Based on the task description and the expected output, compare and evaluate the performance of the agents in the crew based on the Task Output they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
f"task_description: {task_to_evaluate.description} "
f"task_expected_output: {task_to_evaluate.expected_output} "
f"agent: {task_to_evaluate.agent.role if task_to_evaluate.agent else None} "
f"agent_goal: {task_to_evaluate.agent.goal if task_to_evaluate.agent else None} "
f"Task Output: {task_output}"
),
expected_output="Evaluation Score from 1 to 10 based on the performance of the agents on the tasks",
agent=evaluator_agent,
output_pydantic=TaskEvaluationPydanticOutput,
)
def set_iteration(self, iteration: int) -> None:
self.iteration = iteration
def print_crew_evaluation_result(self) -> None:
"""
Prints the evaluation result of the crew in a table.
A Crew with 2 tasks using the command crewai test -n 3
will output the following table:
Tasks Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Tasks/Crew/Agents ┃ Run 1 ┃ Run 2 ┃ Run 3 ┃ Avg. Total ┃ Agents ┃
┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Task 1 │ 9.0 │ 10.0 │ 9.0 │ 9.3 │ - AI LLMs Senior Researcher │
│ │ │ │ │ │ - AI LLMs Reporting Analyst │
│ │ │ │ │ │ │
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │ 9.0 │ - AI LLMs Senior Researcher │
│ │ │ │ │ │ - AI LLMs Reporting Analyst │
│ │ │ │ │ │ │
│ Crew │ 9.0 │ 9.5 │ 9.0 │ 9.2 │ │
│ Execution Time (s) │ 42 │ 79 │ 52 │ 57 │ │
└────────────────────┴───────┴───────┴───────┴────────────┴──────────────────────────────┘
"""
task_averages = [
sum(scores) / len(scores) for scores in zip(*self.tasks_scores.values())
]
crew_average = sum(task_averages) / len(task_averages)
table = Table(title="Tasks Scores \n (1-10 Higher is better)", box=HEAVY_EDGE)
table.add_column("Tasks/Crew/Agents", style="cyan")
for run in range(1, len(self.tasks_scores) + 1):
table.add_column(f"Run {run}", justify="center")
table.add_column("Avg. Total", justify="center")
table.add_column("Agents", style="green")
for task_index, task in enumerate(self.crew.tasks):
task_scores = [
self.tasks_scores[run][task_index]
for run in range(1, len(self.tasks_scores) + 1)
]
avg_score = task_averages[task_index]
agents = list(task.processed_by_agents)
# Add the task row with the first agent
table.add_row(
f"Task {task_index + 1}",
*[f"{score:.1f}" for score in task_scores],
f"{avg_score:.1f}",
f"- {agents[0]}" if agents else "",
)
# Add rows for additional agents
for agent in agents[1:]:
table.add_row("", "", "", "", "", f"- {agent}")
# Add a blank separator row if it's not the last task
if task_index < len(self.crew.tasks) - 1:
table.add_row("", "", "", "", "", "")
# Add Crew and Execution Time rows
crew_scores = [
sum(self.tasks_scores[run]) / len(self.tasks_scores[run])
for run in range(1, len(self.tasks_scores) + 1)
]
table.add_row(
"Crew",
*[f"{score:.2f}" for score in crew_scores],
f"{crew_average:.1f}",
"",
)
run_exec_times = [
int(sum(tasks_exec_times))
for _, tasks_exec_times in self.run_execution_times.items()
]
execution_time_avg = int(sum(run_exec_times) / len(run_exec_times))
table.add_row(
"Execution Time (s)", *map(str, run_exec_times), f"{execution_time_avg}", ""
)
console = Console()
console.print(table)
def evaluate(self, task_output: TaskOutput):
"""Evaluates the performance of the agents in the crew based on the tasks they have performed."""
current_task = None
for task in self.crew.tasks:
if task.description == task_output.description:
current_task = task
break
if not current_task or not task_output:
raise ValueError(
"Task to evaluate and task output are required for evaluation"
)
evaluator_agent = self._evaluator_agent()
evaluation_task = self._evaluation_task(
evaluator_agent, current_task, task_output.raw
)
evaluation_result = evaluation_task.execute_sync()
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
self._test_result_span = self._telemetry.individual_test_result_span(
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.llm.model,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(
current_task.execution_duration
)
else:
raise ValueError("Evaluation result is not in the expected format")