mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 07:08:31 +00:00
- Extract model conversion logic to _get_llm_instance helper method - Improve error message clarity - Simplify LLM instance creation in CrewEvaluator Co-Authored-By: Joe Moura <joao@crewai.com>
194 lines
9.0 KiB
Python
194 lines
9.0 KiB
Python
from collections import defaultdict
|
|
from typing import Union
|
|
|
|
from pydantic import BaseModel, Field
|
|
from rich.box import HEAVY_EDGE
|
|
from rich.console import Console
|
|
from rich.table import Table
|
|
|
|
from crewai.agent import Agent
|
|
from crewai.llm import LLM
|
|
from crewai.task import Task
|
|
from crewai.tasks.task_output import TaskOutput
|
|
from crewai.telemetry import Telemetry
|
|
|
|
|
|
class TaskEvaluationPydanticOutput(BaseModel):
|
|
quality: float = Field(
|
|
description="A score from 1 to 10 evaluating on completion, quality, and overall performance from the task_description and task_expected_output to the actual Task Output."
|
|
)
|
|
|
|
|
|
class CrewEvaluator:
|
|
"""
|
|
A class to evaluate the performance of the agents in the crew based on the tasks they have performed.
|
|
|
|
Attributes:
|
|
crew (Crew): The crew of agents to evaluate.
|
|
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
|
|
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
|
|
iteration (int): The current iteration of the evaluation.
|
|
"""
|
|
|
|
tasks_scores: defaultdict = defaultdict(list)
|
|
run_execution_times: defaultdict = defaultdict(list)
|
|
iteration: int = 0
|
|
|
|
def __init__(self, crew, llm: Union[str, LLM]):
|
|
self.crew = crew
|
|
self.llm = LLM(model=llm) if isinstance(llm, str) else llm
|
|
self._telemetry = Telemetry()
|
|
self._setup_for_evaluating()
|
|
|
|
def _setup_for_evaluating(self) -> None:
|
|
"""Sets up the crew for evaluating."""
|
|
for task in self.crew.tasks:
|
|
task.callback = self.evaluate
|
|
|
|
def _evaluator_agent(self):
|
|
return Agent(
|
|
role="Task Execution Evaluator",
|
|
goal=(
|
|
"Your goal is to evaluate the performance of the agents in the crew based on the tasks they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
|
|
),
|
|
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
|
|
verbose=False,
|
|
llm=self.llm,
|
|
)
|
|
|
|
def _evaluation_task(
|
|
self, evaluator_agent: Agent, task_to_evaluate: Task, task_output: str
|
|
) -> Task:
|
|
return Task(
|
|
description=(
|
|
"Based on the task description and the expected output, compare and evaluate the performance of the agents in the crew based on the Task Output they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
|
|
f"task_description: {task_to_evaluate.description} "
|
|
f"task_expected_output: {task_to_evaluate.expected_output} "
|
|
f"agent: {task_to_evaluate.agent.role if task_to_evaluate.agent else None} "
|
|
f"agent_goal: {task_to_evaluate.agent.goal if task_to_evaluate.agent else None} "
|
|
f"Task Output: {task_output}"
|
|
),
|
|
expected_output="Evaluation Score from 1 to 10 based on the performance of the agents on the tasks",
|
|
agent=evaluator_agent,
|
|
output_pydantic=TaskEvaluationPydanticOutput,
|
|
)
|
|
|
|
def set_iteration(self, iteration: int) -> None:
|
|
self.iteration = iteration
|
|
|
|
def print_crew_evaluation_result(self) -> None:
|
|
"""
|
|
Prints the evaluation result of the crew in a table.
|
|
A Crew with 2 tasks using the command crewai test -n 3
|
|
will output the following table:
|
|
|
|
Tasks Scores
|
|
(1-10 Higher is better)
|
|
┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
|
┃ Tasks/Crew/Agents ┃ Run 1 ┃ Run 2 ┃ Run 3 ┃ Avg. Total ┃ Agents ┃
|
|
┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
|
│ Task 1 │ 9.0 │ 10.0 │ 9.0 │ 9.3 │ - AI LLMs Senior Researcher │
|
|
│ │ │ │ │ │ - AI LLMs Reporting Analyst │
|
|
│ │ │ │ │ │ │
|
|
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │ 9.0 │ - AI LLMs Senior Researcher │
|
|
│ │ │ │ │ │ - AI LLMs Reporting Analyst │
|
|
│ │ │ │ │ │ │
|
|
│ Crew │ 9.0 │ 9.5 │ 9.0 │ 9.2 │ │
|
|
│ Execution Time (s) │ 42 │ 79 │ 52 │ 57 │ │
|
|
└────────────────────┴───────┴───────┴───────┴────────────┴──────────────────────────────┘
|
|
"""
|
|
task_averages = [
|
|
sum(scores) / len(scores) for scores in zip(*self.tasks_scores.values())
|
|
]
|
|
crew_average = sum(task_averages) / len(task_averages)
|
|
|
|
table = Table(title="Tasks Scores \n (1-10 Higher is better)", box=HEAVY_EDGE)
|
|
|
|
table.add_column("Tasks/Crew/Agents", style="cyan")
|
|
for run in range(1, len(self.tasks_scores) + 1):
|
|
table.add_column(f"Run {run}", justify="center")
|
|
table.add_column("Avg. Total", justify="center")
|
|
table.add_column("Agents", style="green")
|
|
|
|
for task_index, task in enumerate(self.crew.tasks):
|
|
task_scores = [
|
|
self.tasks_scores[run][task_index]
|
|
for run in range(1, len(self.tasks_scores) + 1)
|
|
]
|
|
avg_score = task_averages[task_index]
|
|
agents = list(task.processed_by_agents)
|
|
|
|
# Add the task row with the first agent
|
|
table.add_row(
|
|
f"Task {task_index + 1}",
|
|
*[f"{score:.1f}" for score in task_scores],
|
|
f"{avg_score:.1f}",
|
|
f"- {agents[0]}" if agents else "",
|
|
)
|
|
|
|
# Add rows for additional agents
|
|
for agent in agents[1:]:
|
|
table.add_row("", "", "", "", "", f"- {agent}")
|
|
|
|
# Add a blank separator row if it's not the last task
|
|
if task_index < len(self.crew.tasks) - 1:
|
|
table.add_row("", "", "", "", "", "")
|
|
|
|
# Add Crew and Execution Time rows
|
|
crew_scores = [
|
|
sum(self.tasks_scores[run]) / len(self.tasks_scores[run])
|
|
for run in range(1, len(self.tasks_scores) + 1)
|
|
]
|
|
table.add_row(
|
|
"Crew",
|
|
*[f"{score:.2f}" for score in crew_scores],
|
|
f"{crew_average:.1f}",
|
|
"",
|
|
)
|
|
|
|
run_exec_times = [
|
|
int(sum(tasks_exec_times))
|
|
for _, tasks_exec_times in self.run_execution_times.items()
|
|
]
|
|
execution_time_avg = int(sum(run_exec_times) / len(run_exec_times))
|
|
table.add_row(
|
|
"Execution Time (s)", *map(str, run_exec_times), f"{execution_time_avg}", ""
|
|
)
|
|
|
|
console = Console()
|
|
console.print(table)
|
|
|
|
def evaluate(self, task_output: TaskOutput):
|
|
"""Evaluates the performance of the agents in the crew based on the tasks they have performed."""
|
|
current_task = None
|
|
for task in self.crew.tasks:
|
|
if task.description == task_output.description:
|
|
current_task = task
|
|
break
|
|
|
|
if not current_task or not task_output:
|
|
raise ValueError(
|
|
"Task to evaluate and task output are required for evaluation"
|
|
)
|
|
|
|
evaluator_agent = self._evaluator_agent()
|
|
evaluation_task = self._evaluation_task(
|
|
evaluator_agent, current_task, task_output.raw
|
|
)
|
|
|
|
evaluation_result = evaluation_task.execute_sync()
|
|
|
|
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
|
|
self._test_result_span = self._telemetry.individual_test_result_span(
|
|
self.crew,
|
|
evaluation_result.pydantic.quality,
|
|
current_task.execution_duration,
|
|
self.llm.model,
|
|
)
|
|
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
|
|
self.run_execution_times[self.iteration].append(
|
|
current_task.execution_duration
|
|
)
|
|
else:
|
|
raise ValueError("Evaluation result is not in the expected format")
|