Files
crewAI/docs/pt-BR/learn/llm-hooks.mdx
Lorenze Jay 528d812263 Lorenze/feat hooks (#3902)
* feat: implement LLM call hooks and enhance agent execution context

- Introduced LLM call hooks to allow modification of messages and responses during LLM interactions.
- Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow.
- Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications.
- Added validation for hook callables to ensure proper functionality.
- Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities.
- Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes.

* feat: implement LLM call hooks and enhance agent execution context

- Introduced LLM call hooks to allow modification of messages and responses during LLM interactions.
- Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow.
- Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications.
- Added validation for hook callables to ensure proper functionality.
- Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities.
- Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes.

* fix verbose

* feat: introduce crew-scoped hook decorators and refactor hook registration

- Added decorators for before and after LLM and tool calls to enhance flexibility in modifying execution behavior.
- Implemented a centralized hook registration mechanism within CrewBase to automatically register crew-scoped hooks.
- Removed the obsolete base.py file as its functionality has been integrated into the new decorators and registration system.
- Enhanced tests for the new hook decorators to ensure proper registration and execution flow.
- Updated existing hook handling to accommodate the new decorator-based approach, improving code organization and maintainability.

* feat: enhance hook management with clear and unregister functions

- Introduced functions to unregister specific before and after hooks for both LLM and tool calls, improving flexibility in hook management.
- Added clear functions to remove all registered hooks of each type, facilitating easier state management and cleanup.
- Implemented a convenience function to clear all global hooks in one call, streamlining the process for testing and execution context resets.
- Enhanced tests to verify the functionality of unregistering and clearing hooks, ensuring robust behavior in various scenarios.

* refactor: enhance hook type management for LLM and tool hooks

- Updated hook type definitions to use generic protocols for better type safety and flexibility.
- Replaced Callable type annotations with specific BeforeLLMCallHookType and AfterLLMCallHookType for clarity.
- Improved the registration and retrieval functions for before and after hooks to align with the new type definitions.
- Enhanced the setup functions to handle hook execution results, allowing for blocking of LLM calls based on hook logic.
- Updated related tests to ensure proper functionality and type adherence across the hook management system.

* feat: add execution and tool hooks documentation

- Introduced new documentation for execution hooks, LLM call hooks, and tool call hooks to provide comprehensive guidance on their usage and implementation in CrewAI.
- Updated existing documentation to include references to the new hooks, enhancing the learning resources available for users.
- Ensured consistency across multiple languages (English, Portuguese, Korean) for the new documentation, improving accessibility for a wider audience.
- Added examples and troubleshooting sections to assist users in effectively utilizing hooks for agent operations.

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-11-13 10:11:50 -08:00

389 lines
12 KiB
Plaintext

---
title: Hooks de Chamada LLM
description: Aprenda a usar hooks de chamada LLM para interceptar, modificar e controlar interações com modelos de linguagem no CrewAI
mode: "wide"
---
Os Hooks de Chamada LLM fornecem controle fino sobre interações com modelos de linguagem durante a execução do agente. Esses hooks permitem interceptar chamadas LLM, modificar prompts, transformar respostas, implementar gates de aprovação e adicionar logging ou monitoramento personalizado.
## Visão Geral
Os hooks LLM são executados em dois pontos críticos:
- **Antes da Chamada LLM**: Modificar mensagens, validar entradas ou bloquear execução
- **Depois da Chamada LLM**: Transformar respostas, sanitizar saídas ou modificar histórico de conversação
## Tipos de Hook
### Hooks Antes da Chamada LLM
Executados antes de cada chamada LLM, esses hooks podem:
- Inspecionar e modificar mensagens enviadas ao LLM
- Bloquear execução LLM com base em condições
- Implementar limitação de taxa ou gates de aprovação
- Adicionar contexto ou mensagens do sistema
- Registrar detalhes da requisição
**Assinatura:**
```python
def before_hook(context: LLMCallHookContext) -> bool | None:
# Retorne False para bloquear execução
# Retorne True ou None para permitir execução
...
```
### Hooks Depois da Chamada LLM
Executados depois de cada chamada LLM, esses hooks podem:
- Modificar ou sanitizar respostas do LLM
- Adicionar metadados ou formatação
- Registrar detalhes da resposta
- Atualizar histórico de conversação
- Implementar filtragem de conteúdo
**Assinatura:**
```python
def after_hook(context: LLMCallHookContext) -> str | None:
# Retorne string de resposta modificada
# Retorne None para manter resposta original
...
```
## Contexto do Hook LLM
O objeto `LLMCallHookContext` fornece acesso abrangente ao estado de execução:
```python
class LLMCallHookContext:
executor: CrewAgentExecutor # Referência completa ao executor
messages: list # Lista de mensagens mutável
agent: Agent # Agente atual
task: Task # Tarefa atual
crew: Crew # Instância da crew
llm: BaseLLM # Instância do LLM
iterations: int # Contagem de iteração atual
response: str | None # Resposta do LLM (apenas hooks posteriores)
```
### Modificando Mensagens
**Importante:** Sempre modifique mensagens in-place:
```python
# ✅ Correto - modificar in-place
def add_context(context: LLMCallHookContext) -> None:
context.messages.append({"role": "system", "content": "Seja conciso"})
# ❌ Errado - substitui referência da lista
def wrong_approach(context: LLMCallHookContext) -> None:
context.messages = [{"role": "system", "content": "Seja conciso"}]
```
## Métodos de Registro
### 1. Registro Baseado em Decoradores (Recomendado)
Use decoradores para sintaxe mais limpa:
```python
from crewai.hooks import before_llm_call, after_llm_call
@before_llm_call
def validate_iteration_count(context):
"""Valida a contagem de iterações."""
if context.iterations > 10:
print("⚠️ Máximo de iterações excedido")
return False # Bloquear execução
return None
@after_llm_call
def sanitize_response(context):
"""Remove dados sensíveis."""
if context.response and "API_KEY" in context.response:
return context.response.replace("API_KEY", "[CENSURADO]")
return None
```
### 2. Hooks com Escopo de Crew
Registre hooks para uma instância específica de crew:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_llm_call_crew, after_llm_call_crew
@CrewBase
class MyProjCrew:
@before_llm_call_crew
def validate_inputs(self, context):
# Aplica-se apenas a esta crew
if context.iterations == 0:
print(f"Iniciando tarefa: {context.task.description}")
return None
@after_llm_call_crew
def log_responses(self, context):
# Logging específico da crew
print(f"Comprimento da resposta: {len(context.response)}")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## Casos de Uso Comuns
### 1. Limitação de Iterações
```python
@before_llm_call
def limit_iterations(context: LLMCallHookContext) -> bool | None:
"""Previne loops infinitos limitando iterações."""
max_iterations = 15
if context.iterations > max_iterations:
print(f"⛔ Bloqueado: Excedeu {max_iterations} iterações")
return False # Bloquear execução
return None
```
### 2. Gate de Aprovação Humana
```python
@before_llm_call
def require_approval(context: LLMCallHookContext) -> bool | None:
"""Requer aprovação após certas iterações."""
if context.iterations > 5:
response = context.request_human_input(
prompt=f"Iteração {context.iterations}: Aprovar chamada LLM?",
default_message="Pressione Enter para aprovar, ou digite 'não' para bloquear:"
)
if response.lower() == "não":
print("🚫 Chamada LLM bloqueada pelo usuário")
return False
return None
```
### 3. Adicionando Contexto do Sistema
```python
@before_llm_call
def add_guardrails(context: LLMCallHookContext) -> None:
"""Adiciona diretrizes de segurança a cada chamada LLM."""
context.messages.append({
"role": "system",
"content": "Garanta que as respostas sejam factuais e cite fontes quando possível."
})
return None
```
### 4. Sanitização de Resposta
```python
@after_llm_call
def sanitize_sensitive_data(context: LLMCallHookContext) -> str | None:
"""Remove padrões sensíveis."""
if not context.response:
return None
import re
sanitized = context.response
sanitized = re.sub(r'\b\d{3}\.\d{3}\.\d{3}-\d{2}\b', '[CPF-CENSURADO]', sanitized)
sanitized = re.sub(r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b', '[CARTÃO-CENSURADO]', sanitized)
return sanitized
```
### 5. Rastreamento de Custos
```python
import tiktoken
@before_llm_call
def track_token_usage(context: LLMCallHookContext) -> None:
"""Rastreia tokens de entrada."""
encoding = tiktoken.get_encoding("cl100k_base")
total_tokens = sum(
len(encoding.encode(msg.get("content", "")))
for msg in context.messages
)
print(f"📊 Tokens de entrada: ~{total_tokens}")
return None
@after_llm_call
def track_response_tokens(context: LLMCallHookContext) -> None:
"""Rastreia tokens de resposta."""
if context.response:
encoding = tiktoken.get_encoding("cl100k_base")
tokens = len(encoding.encode(context.response))
print(f"📊 Tokens de resposta: ~{tokens}")
return None
```
### 6. Logging de Debug
```python
@before_llm_call
def debug_request(context: LLMCallHookContext) -> None:
"""Debug de requisição LLM."""
print(f"""
🔍 Debug de Chamada LLM:
- Agente: {context.agent.role}
- Tarefa: {context.task.description[:50]}...
- Iteração: {context.iterations}
- Contagem de Mensagens: {len(context.messages)}
- Última Mensagem: {context.messages[-1] if context.messages else 'Nenhuma'}
""")
return None
@after_llm_call
def debug_response(context: LLMCallHookContext) -> None:
"""Debug de resposta LLM."""
if context.response:
print(f"✅ Preview da Resposta: {context.response[:100]}...")
return None
```
## Gerenciamento de Hooks
### Desregistrando Hooks
```python
from crewai.hooks import (
unregister_before_llm_call_hook,
unregister_after_llm_call_hook
)
# Desregistrar hook específico
def my_hook(context):
...
register_before_llm_call_hook(my_hook)
# Mais tarde...
unregister_before_llm_call_hook(my_hook) # Retorna True se encontrado
```
### Limpando Hooks
```python
from crewai.hooks import (
clear_before_llm_call_hooks,
clear_after_llm_call_hooks,
clear_all_llm_call_hooks
)
# Limpar tipo específico de hook
count = clear_before_llm_call_hooks()
print(f"Limpou {count} hooks antes")
# Limpar todos os hooks LLM
before_count, after_count = clear_all_llm_call_hooks()
print(f"Limpou {before_count} hooks antes e {after_count} hooks depois")
```
## Padrões Avançados
### Execução Condicional de Hook
```python
@before_llm_call
def conditional_blocking(context: LLMCallHookContext) -> bool | None:
"""Bloqueia apenas em condições específicas."""
# Bloquear apenas para agentes específicos
if context.agent.role == "researcher" and context.iterations > 10:
return False
# Bloquear apenas para tarefas específicas
if "sensível" in context.task.description.lower() and context.iterations > 5:
return False
return None
```
### Modificações com Consciência de Contexto
```python
@before_llm_call
def adaptive_prompting(context: LLMCallHookContext) -> None:
"""Adiciona contexto diferente baseado na iteração."""
if context.iterations == 0:
context.messages.append({
"role": "system",
"content": "Comece com uma visão geral de alto nível."
})
elif context.iterations > 3:
context.messages.append({
"role": "system",
"content": "Foque em detalhes específicos e forneça exemplos."
})
return None
```
## Melhores Práticas
1. **Mantenha Hooks Focados**: Cada hook deve ter uma responsabilidade única
2. **Evite Computação Pesada**: Hooks executam em cada chamada LLM
3. **Trate Erros Graciosamente**: Use try-except para prevenir falhas de hooks
4. **Use Type Hints**: Aproveite `LLMCallHookContext` para melhor suporte IDE
5. **Documente Comportamento do Hook**: Especialmente para condições de bloqueio
6. **Teste Hooks Independentemente**: Teste unitário de hooks antes de usar em produção
7. **Limpe Hooks em Testes**: Use `clear_all_llm_call_hooks()` entre execuções de teste
8. **Modifique In-Place**: Sempre modifique `context.messages` in-place, nunca substitua
## Tratamento de Erros
```python
@before_llm_call
def safe_hook(context: LLMCallHookContext) -> bool | None:
try:
# Sua lógica de hook
if some_condition:
return False
except Exception as e:
print(f"⚠️ Erro no hook: {e}")
# Decida: permitir ou bloquear em erro
return None # Permitir execução apesar do erro
```
## Segurança de Tipos
```python
from crewai.hooks import LLMCallHookContext, BeforeLLMCallHookType, AfterLLMCallHookType
# Anotações de tipo explícitas
def my_before_hook(context: LLMCallHookContext) -> bool | None:
return None
def my_after_hook(context: LLMCallHookContext) -> str | None:
return None
# Registro type-safe
register_before_llm_call_hook(my_before_hook)
register_after_llm_call_hook(my_after_hook)
```
## Solução de Problemas
### Hook Não Está Executando
- Verifique se o hook está registrado antes da execução da crew
- Verifique se hook anterior retornou `False` (bloqueia hooks subsequentes)
- Garanta que assinatura do hook corresponda ao tipo esperado
### Modificações de Mensagem Não Persistem
- Use modificações in-place: `context.messages.append()`
- Não substitua a lista: `context.messages = []`
### Modificações de Resposta Não Funcionam
- Retorne a string modificada dos hooks posteriores
- Retornar `None` mantém a resposta original
## Conclusão
Os Hooks de Chamada LLM fornecem capacidades poderosas para controlar e monitorar interações com modelos de linguagem no CrewAI. Use-os para implementar guardrails de segurança, gates de aprovação, logging, rastreamento de custos e sanitização de respostas. Combinados com tratamento adequado de erros e segurança de tipos, os hooks permitem sistemas de agentes robustos e prontos para produção.