mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
1189 lines
37 KiB
Python
1189 lines
37 KiB
Python
import os
|
|
import sys
|
|
import types
|
|
from unittest.mock import patch, MagicMock, Mock
|
|
import pytest
|
|
|
|
from crewai.llm import LLM
|
|
from crewai.crew import Crew
|
|
from crewai.agent import Agent
|
|
from crewai.task import Task
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def mock_azure_credentials():
|
|
"""Automatically mock Azure credentials for all tests in this module."""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
yield
|
|
|
|
|
|
def test_azure_completion_is_used_when_azure_provider():
|
|
"""
|
|
Test that AzureCompletion from completion.py is used when LLM uses provider 'azure'
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert llm.__class__.__name__ == "AzureCompletion"
|
|
assert llm.provider == "azure"
|
|
assert llm.model == "gpt-4"
|
|
|
|
|
|
def test_azure_completion_is_used_when_azure_openai_provider():
|
|
"""
|
|
Test that AzureCompletion is used when provider is 'azure_openai'
|
|
"""
|
|
llm = LLM(model="azure_openai/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.provider == "azure"
|
|
assert llm.model == "gpt-4"
|
|
|
|
|
|
def test_azure_tool_use_conversation_flow():
|
|
"""
|
|
Test that the Azure completion properly handles tool use conversation flow
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
from azure.ai.inference.models import ChatCompletionsToolCall
|
|
|
|
# Create AzureCompletion instance
|
|
completion = AzureCompletion(
|
|
model="gpt-4",
|
|
api_key="test-key",
|
|
endpoint="https://test.openai.azure.com"
|
|
)
|
|
|
|
# Mock tool function
|
|
def mock_weather_tool(location: str) -> str:
|
|
return f"The weather in {location} is sunny and 75°F"
|
|
|
|
available_functions = {"get_weather": mock_weather_tool}
|
|
|
|
# Mock the Azure client responses
|
|
with patch.object(completion.client, 'complete') as mock_complete:
|
|
# Mock tool call in response with proper type
|
|
mock_tool_call = MagicMock(spec=ChatCompletionsToolCall)
|
|
mock_tool_call.function.name = "get_weather"
|
|
mock_tool_call.function.arguments = '{"location": "San Francisco"}'
|
|
|
|
mock_message = MagicMock()
|
|
mock_message.content = None
|
|
mock_message.tool_calls = [mock_tool_call]
|
|
|
|
mock_choice = MagicMock()
|
|
mock_choice.message = mock_message
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [mock_choice]
|
|
mock_response.usage = MagicMock(
|
|
prompt_tokens=100,
|
|
completion_tokens=50,
|
|
total_tokens=150
|
|
)
|
|
|
|
mock_complete.return_value = mock_response
|
|
|
|
# Test the call
|
|
messages = [{"role": "user", "content": "What's the weather like in San Francisco?"}]
|
|
result = completion.call(
|
|
messages=messages,
|
|
available_functions=available_functions
|
|
)
|
|
|
|
# Verify the tool was executed and returned the result
|
|
assert result == "The weather in San Francisco is sunny and 75°F"
|
|
|
|
# Verify that the API was called
|
|
assert mock_complete.called
|
|
|
|
|
|
def test_azure_completion_module_is_imported():
|
|
"""
|
|
Test that the completion module is properly imported when using Azure provider
|
|
"""
|
|
module_name = "crewai.llms.providers.azure.completion"
|
|
|
|
# Remove module from cache if it exists
|
|
if module_name in sys.modules:
|
|
del sys.modules[module_name]
|
|
|
|
# Create LLM instance - this should trigger the import
|
|
LLM(model="azure/gpt-4")
|
|
|
|
# Verify the module was imported
|
|
assert module_name in sys.modules
|
|
completion_mod = sys.modules[module_name]
|
|
assert isinstance(completion_mod, types.ModuleType)
|
|
|
|
# Verify the class exists in the module
|
|
assert hasattr(completion_mod, 'AzureCompletion')
|
|
|
|
|
|
def test_native_azure_raises_error_when_initialization_fails():
|
|
"""
|
|
Test that LLM raises ImportError when native Azure completion fails to initialize.
|
|
This ensures we don't silently fall back when there's a configuration issue.
|
|
"""
|
|
# Mock the _get_native_provider to return a failing class
|
|
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
|
|
|
|
class FailingCompletion:
|
|
def __init__(self, *args, **kwargs):
|
|
raise Exception("Native Azure AI Inference SDK failed")
|
|
|
|
mock_get_provider.return_value = FailingCompletion
|
|
|
|
# This should raise ImportError, not fall back to LiteLLM
|
|
with pytest.raises(ImportError) as excinfo:
|
|
LLM(model="azure/gpt-4")
|
|
|
|
assert "Error importing native provider" in str(excinfo.value)
|
|
assert "Native Azure AI Inference SDK failed" in str(excinfo.value)
|
|
|
|
|
|
def test_azure_completion_initialization_parameters():
|
|
"""
|
|
Test that AzureCompletion is initialized with correct parameters
|
|
"""
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
temperature=0.7,
|
|
max_tokens=2000,
|
|
top_p=0.9,
|
|
frequency_penalty=0.5,
|
|
presence_penalty=0.3,
|
|
api_key="test-key",
|
|
endpoint="https://test.openai.azure.com"
|
|
)
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.model == "gpt-4"
|
|
assert llm.temperature == 0.7
|
|
assert llm.max_tokens == 2000
|
|
assert llm.top_p == 0.9
|
|
assert llm.frequency_penalty == 0.5
|
|
assert llm.presence_penalty == 0.3
|
|
|
|
|
|
def test_azure_specific_parameters():
|
|
"""
|
|
Test Azure-specific parameters like stop sequences, streaming, and API version
|
|
"""
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
stop=["Human:", "Assistant:"],
|
|
stream=True,
|
|
api_version="2024-02-01",
|
|
endpoint="https://test.openai.azure.com"
|
|
)
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.stop == ["Human:", "Assistant:"]
|
|
assert llm.stream == True
|
|
assert llm.api_version == "2024-02-01"
|
|
|
|
|
|
def test_azure_completion_call():
|
|
"""
|
|
Test that AzureCompletion call method works
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the call method on the instance
|
|
with patch.object(llm, 'call', return_value="Hello! I'm Azure OpenAI, ready to help.") as mock_call:
|
|
result = llm.call("Hello, how are you?")
|
|
|
|
assert result == "Hello! I'm Azure OpenAI, ready to help."
|
|
mock_call.assert_called_once_with("Hello, how are you?")
|
|
|
|
|
|
def test_azure_completion_called_during_crew_execution():
|
|
"""
|
|
Test that AzureCompletion.call is actually invoked when running a crew
|
|
"""
|
|
# Create the LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the call method on the specific instance
|
|
with patch.object(azure_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
|
|
|
|
# Create agent with explicit LLM configuration
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find population info",
|
|
backstory="You research populations.",
|
|
llm=azure_llm,
|
|
)
|
|
|
|
task = Task(
|
|
description="Find Tokyo population",
|
|
expected_output="Population number",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = crew.kickoff()
|
|
|
|
# Verify mock was called
|
|
assert mock_call.called
|
|
assert "14 million" in str(result)
|
|
|
|
|
|
def test_azure_completion_call_arguments():
|
|
"""
|
|
Test that AzureCompletion.call is invoked with correct arguments
|
|
"""
|
|
# Create LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the instance method
|
|
with patch.object(azure_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed successfully."
|
|
|
|
agent = Agent(
|
|
role="Test Agent",
|
|
goal="Complete a simple task",
|
|
backstory="You are a test agent.",
|
|
llm=azure_llm # Use same instance
|
|
)
|
|
|
|
task = Task(
|
|
description="Say hello world",
|
|
expected_output="Hello world",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
# Verify call was made
|
|
assert mock_call.called
|
|
|
|
# Check the arguments passed to the call method
|
|
call_args = mock_call.call_args
|
|
assert call_args is not None
|
|
|
|
# The first argument should be the messages
|
|
messages = call_args[0][0] # First positional argument
|
|
assert isinstance(messages, (str, list))
|
|
|
|
# Verify that the task description appears in the messages
|
|
if isinstance(messages, str):
|
|
assert "hello world" in messages.lower()
|
|
elif isinstance(messages, list):
|
|
message_content = str(messages).lower()
|
|
assert "hello world" in message_content
|
|
|
|
|
|
def test_multiple_azure_calls_in_crew():
|
|
"""
|
|
Test that AzureCompletion.call is invoked multiple times for multiple tasks
|
|
"""
|
|
# Create LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the instance method
|
|
with patch.object(azure_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed."
|
|
|
|
agent = Agent(
|
|
role="Multi-task Agent",
|
|
goal="Complete multiple tasks",
|
|
backstory="You can handle multiple tasks.",
|
|
llm=azure_llm # Use same instance
|
|
)
|
|
|
|
task1 = Task(
|
|
description="First task",
|
|
expected_output="First result",
|
|
agent=agent,
|
|
)
|
|
|
|
task2 = Task(
|
|
description="Second task",
|
|
expected_output="Second result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(
|
|
agents=[agent],
|
|
tasks=[task1, task2]
|
|
)
|
|
crew.kickoff()
|
|
|
|
# Verify multiple calls were made
|
|
assert mock_call.call_count >= 2 # At least one call per task
|
|
|
|
# Verify each call had proper arguments
|
|
for call in mock_call.call_args_list:
|
|
assert len(call[0]) > 0 # Has positional arguments
|
|
messages = call[0][0]
|
|
assert messages is not None
|
|
|
|
|
|
def test_azure_completion_with_tools():
|
|
"""
|
|
Test that AzureCompletion.call is invoked with tools when agent has tools
|
|
"""
|
|
from crewai.tools import tool
|
|
|
|
@tool
|
|
def sample_tool(query: str) -> str:
|
|
"""A sample tool for testing"""
|
|
return f"Tool result for: {query}"
|
|
|
|
# Create LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the instance method
|
|
with patch.object(azure_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed with tools."
|
|
|
|
agent = Agent(
|
|
role="Tool User",
|
|
goal="Use tools to complete tasks",
|
|
backstory="You can use tools.",
|
|
llm=azure_llm, # Use same instance
|
|
tools=[sample_tool]
|
|
)
|
|
|
|
task = Task(
|
|
description="Use the sample tool",
|
|
expected_output="Tool usage result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
assert mock_call.called
|
|
|
|
call_args = mock_call.call_args
|
|
call_kwargs = call_args[1] if len(call_args) > 1 else {}
|
|
|
|
if 'tools' in call_kwargs:
|
|
assert call_kwargs['tools'] is not None
|
|
assert len(call_kwargs['tools']) > 0
|
|
|
|
|
|
def test_azure_raises_error_when_endpoint_missing():
|
|
"""Test that AzureCompletion raises ValueError when endpoint is missing"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
# Clear environment variables
|
|
with patch.dict(os.environ, {}, clear=True):
|
|
with pytest.raises(ValueError, match="Azure endpoint is required"):
|
|
AzureCompletion(model="gpt-4", api_key="test-key")
|
|
|
|
def test_azure_raises_error_when_api_key_missing():
|
|
"""Test that AzureCompletion raises ValueError when API key is missing"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
# Clear environment variables
|
|
with patch.dict(os.environ, {}, clear=True):
|
|
with pytest.raises(ValueError, match="Azure API key is required"):
|
|
AzureCompletion(model="gpt-4", endpoint="https://test.openai.azure.com")
|
|
def test_azure_endpoint_configuration():
|
|
"""
|
|
Test that Azure endpoint configuration works with multiple environment variable names
|
|
"""
|
|
# Test with AZURE_ENDPOINT
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test1.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.endpoint == "https://test1.openai.azure.com/openai/deployments/gpt-4"
|
|
|
|
# Test with AZURE_OPENAI_ENDPOINT
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_OPENAI_ENDPOINT": "https://test2.openai.azure.com"
|
|
}, clear=True):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert isinstance(llm, AzureCompletion)
|
|
# Endpoint should be auto-constructed for Azure OpenAI
|
|
assert llm.endpoint == "https://test2.openai.azure.com/openai/deployments/gpt-4"
|
|
|
|
|
|
def test_azure_api_key_configuration():
|
|
"""
|
|
Test that API key configuration works from AZURE_API_KEY environment variable
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-azure-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.api_key == "test-azure-key"
|
|
|
|
|
|
def test_azure_model_capabilities():
|
|
"""
|
|
Test that model capabilities are correctly identified
|
|
"""
|
|
# Test GPT-4 model (supports function calling)
|
|
llm_gpt4 = LLM(model="azure/gpt-4")
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm_gpt4, AzureCompletion)
|
|
assert llm_gpt4.is_openai_model == True
|
|
assert llm_gpt4.supports_function_calling() == True
|
|
|
|
# Test GPT-3.5 model
|
|
llm_gpt35 = LLM(model="azure/gpt-35-turbo")
|
|
assert isinstance(llm_gpt35, AzureCompletion)
|
|
assert llm_gpt35.is_openai_model == True
|
|
assert llm_gpt35.supports_function_calling() == True
|
|
|
|
|
|
def test_azure_completion_params_preparation():
|
|
"""
|
|
Test that completion parameters are properly prepared
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
temperature=0.7,
|
|
top_p=0.9,
|
|
frequency_penalty=0.5,
|
|
presence_penalty=0.3,
|
|
max_tokens=1000
|
|
)
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
|
|
messages = [{"role": "user", "content": "Hello"}]
|
|
params = llm._prepare_completion_params(messages)
|
|
|
|
assert params["model"] == "gpt-4"
|
|
assert params["temperature"] == 0.7
|
|
assert params["top_p"] == 0.9
|
|
assert params["frequency_penalty"] == 0.5
|
|
assert params["presence_penalty"] == 0.3
|
|
assert params["max_tokens"] == 1000
|
|
|
|
|
|
def test_azure_model_detection():
|
|
"""
|
|
Test that various Azure model formats are properly detected
|
|
"""
|
|
# Test Azure model naming patterns
|
|
azure_test_cases = [
|
|
"azure/gpt-4",
|
|
"azure_openai/gpt-4",
|
|
"azure/gpt-4o",
|
|
"azure/gpt-35-turbo"
|
|
]
|
|
|
|
for model_name in azure_test_cases:
|
|
llm = LLM(model=model_name)
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion), f"Failed for model: {model_name}"
|
|
|
|
|
|
def test_azure_supports_stop_words():
|
|
"""
|
|
Test that Azure models support stop sequences
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
assert llm.supports_stop_words() == True
|
|
|
|
|
|
def test_azure_context_window_size():
|
|
"""
|
|
Test that Azure models return correct context window sizes
|
|
"""
|
|
# Test GPT-4
|
|
llm_gpt4 = LLM(model="azure/gpt-4")
|
|
context_size_gpt4 = llm_gpt4.get_context_window_size()
|
|
assert context_size_gpt4 > 0 # Should return valid context size
|
|
|
|
# Test GPT-4o
|
|
llm_gpt4o = LLM(model="azure/gpt-4o")
|
|
context_size_gpt4o = llm_gpt4o.get_context_window_size()
|
|
assert context_size_gpt4o > context_size_gpt4 # GPT-4o has larger context
|
|
|
|
|
|
def test_azure_message_formatting():
|
|
"""
|
|
Test that messages are properly formatted for Azure API
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Test message formatting
|
|
test_messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Hello"},
|
|
{"role": "assistant", "content": "Hi there!"},
|
|
{"role": "user", "content": "How are you?"}
|
|
]
|
|
|
|
formatted_messages = llm._format_messages_for_azure(test_messages)
|
|
|
|
# All messages should be formatted as dictionaries with content
|
|
assert len(formatted_messages) == 4
|
|
|
|
# Verify each message is a dict with content
|
|
for msg in formatted_messages:
|
|
assert isinstance(msg, dict)
|
|
assert "content" in msg
|
|
|
|
|
|
def test_azure_streaming_parameter():
|
|
"""
|
|
Test that streaming parameter is properly handled
|
|
"""
|
|
# Test non-streaming
|
|
llm_no_stream = LLM(model="azure/gpt-4", stream=False)
|
|
assert llm_no_stream.stream == False
|
|
|
|
# Test streaming
|
|
llm_stream = LLM(model="azure/gpt-4", stream=True)
|
|
assert llm_stream.stream == True
|
|
|
|
|
|
def test_azure_tool_conversion():
|
|
"""
|
|
Test that tools are properly converted to Azure OpenAI format
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock tool in CrewAI format
|
|
crewai_tools = [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "test_tool",
|
|
"description": "A test tool",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"query": {"type": "string", "description": "Search query"}
|
|
},
|
|
"required": ["query"]
|
|
}
|
|
}
|
|
}]
|
|
|
|
# Test tool conversion
|
|
azure_tools = llm._convert_tools_for_interference(crewai_tools)
|
|
|
|
assert len(azure_tools) == 1
|
|
# Azure tools should maintain the function calling format
|
|
assert azure_tools[0]["type"] == "function"
|
|
assert azure_tools[0]["function"]["name"] == "test_tool"
|
|
assert azure_tools[0]["function"]["description"] == "A test tool"
|
|
assert "parameters" in azure_tools[0]["function"]
|
|
|
|
|
|
def test_azure_environment_variable_endpoint():
|
|
"""
|
|
Test that Azure endpoint is properly loaded from environment
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert llm.client is not None
|
|
assert llm.endpoint == "https://test.openai.azure.com/openai/deployments/gpt-4"
|
|
|
|
|
|
def test_azure_token_usage_tracking():
|
|
"""
|
|
Test that token usage is properly tracked for Azure responses
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the Azure response with usage information
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
mock_message = MagicMock()
|
|
mock_message.content = "test response"
|
|
mock_message.tool_calls = None
|
|
|
|
mock_choice = MagicMock()
|
|
mock_choice.message = mock_message
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [mock_choice]
|
|
mock_response.usage = MagicMock(
|
|
prompt_tokens=50,
|
|
completion_tokens=25,
|
|
total_tokens=75
|
|
)
|
|
mock_complete.return_value = mock_response
|
|
|
|
result = llm.call("Hello")
|
|
|
|
# Verify the response
|
|
assert result == "test response"
|
|
|
|
# Verify token usage was extracted
|
|
usage = llm._extract_azure_token_usage(mock_response)
|
|
assert usage["prompt_tokens"] == 50
|
|
assert usage["completion_tokens"] == 25
|
|
assert usage["total_tokens"] == 75
|
|
|
|
|
|
def test_azure_http_error_handling():
|
|
"""
|
|
Test that Azure HTTP errors are properly handled
|
|
"""
|
|
from azure.core.exceptions import HttpResponseError
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock an HTTP error
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
mock_complete.side_effect = HttpResponseError(message="Rate limit exceeded", response=MagicMock(status_code=429))
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("Hello")
|
|
|
|
|
|
def test_azure_streaming_completion():
|
|
"""
|
|
Test that streaming completions work properly
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
from azure.ai.inference.models import StreamingChatCompletionsUpdate
|
|
|
|
llm = LLM(model="azure/gpt-4", stream=True)
|
|
|
|
# Mock streaming response
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
# Create mock streaming updates with proper type
|
|
mock_updates = []
|
|
for chunk in ["Hello", " ", "world", "!"]:
|
|
mock_delta = MagicMock()
|
|
mock_delta.content = chunk
|
|
mock_delta.tool_calls = None
|
|
|
|
mock_choice = MagicMock()
|
|
mock_choice.delta = mock_delta
|
|
|
|
# Create mock update as StreamingChatCompletionsUpdate instance
|
|
mock_update = MagicMock(spec=StreamingChatCompletionsUpdate)
|
|
mock_update.choices = [mock_choice]
|
|
mock_updates.append(mock_update)
|
|
|
|
mock_complete.return_value = iter(mock_updates)
|
|
|
|
result = llm.call("Say hello")
|
|
|
|
# Verify the full response was assembled
|
|
assert result == "Hello world!"
|
|
|
|
|
|
def test_azure_api_version_default():
|
|
"""
|
|
Test that Azure API version defaults correctly
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
# Should use default or environment variable
|
|
assert llm.api_version is not None
|
|
|
|
|
|
def test_azure_function_calling_support():
|
|
"""
|
|
Test that function calling is supported for OpenAI models
|
|
"""
|
|
# Test with GPT-4 (supports function calling)
|
|
llm_gpt4 = LLM(model="azure/gpt-4")
|
|
assert llm_gpt4.supports_function_calling() == True
|
|
|
|
# Test with GPT-3.5 (supports function calling)
|
|
llm_gpt35 = LLM(model="azure/gpt-35-turbo")
|
|
assert llm_gpt35.supports_function_calling() == True
|
|
|
|
|
|
def test_azure_openai_endpoint_url_construction():
|
|
"""
|
|
Test that Azure OpenAI endpoint URLs are automatically constructed correctly
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test-resource.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4o-mini")
|
|
|
|
assert "/openai/deployments/gpt-4o-mini" in llm.endpoint
|
|
assert llm.endpoint == "https://test-resource.openai.azure.com/openai/deployments/gpt-4o-mini"
|
|
assert llm.is_azure_openai_endpoint == True
|
|
|
|
|
|
def test_azure_openai_endpoint_url_with_trailing_slash():
|
|
"""
|
|
Test that trailing slashes are handled correctly in endpoint URLs
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test-resource.openai.azure.com/" # trailing slash
|
|
}):
|
|
llm = LLM(model="azure/gpt-4o")
|
|
|
|
assert llm.endpoint == "https://test-resource.openai.azure.com/openai/deployments/gpt-4o"
|
|
assert not llm.endpoint.endswith("//")
|
|
|
|
|
|
def test_azure_openai_endpoint_already_complete():
|
|
"""
|
|
Test that already complete Azure OpenAI endpoint URLs are not modified
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test-resource.openai.azure.com/openai/deployments/my-deployment"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert llm.endpoint == "https://test-resource.openai.azure.com/openai/deployments/my-deployment"
|
|
assert llm.is_azure_openai_endpoint == True
|
|
|
|
|
|
def test_non_azure_openai_endpoint_unchanged():
|
|
"""
|
|
Test that non-Azure OpenAI endpoints are not modified
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/mistral-large")
|
|
|
|
assert llm.endpoint == "https://models.inference.ai.azure.com"
|
|
assert llm.is_azure_openai_endpoint == False
|
|
|
|
|
|
def test_azure_openai_model_parameter_excluded():
|
|
"""
|
|
Test that model parameter is NOT included for Azure OpenAI endpoints
|
|
"""
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com/openai/deployments/gpt-4"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Prepare params to check model parameter handling
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
|
|
# Model parameter should NOT be included for Azure OpenAI endpoints
|
|
assert "model" not in params
|
|
assert "messages" in params
|
|
assert params["stream"] == False
|
|
|
|
|
|
def test_non_azure_openai_model_parameter_included():
|
|
"""
|
|
Test that model parameter IS included for non-Azure OpenAI endpoints
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/mistral-large")
|
|
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
|
|
assert "model" in params
|
|
assert params["model"] == "mistral-large"
|
|
|
|
|
|
def test_azure_message_formatting_with_role():
|
|
"""
|
|
Test that messages are formatted with both 'role' and 'content' fields
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Test with string message
|
|
formatted = llm._format_messages_for_azure("Hello world")
|
|
assert isinstance(formatted, list)
|
|
assert len(formatted) > 0
|
|
assert "role" in formatted[0]
|
|
assert "content" in formatted[0]
|
|
|
|
messages = [
|
|
{"role": "system", "content": "You are helpful"},
|
|
{"role": "user", "content": "Hello"},
|
|
{"role": "assistant", "content": "Hi there"}
|
|
]
|
|
formatted = llm._format_messages_for_azure(messages)
|
|
|
|
for msg in formatted:
|
|
assert "role" in msg
|
|
assert "content" in msg
|
|
assert msg["role"] in ["system", "user", "assistant"]
|
|
|
|
|
|
def test_azure_message_formatting_default_role():
|
|
"""
|
|
Test that messages without a role default to 'user'
|
|
"""
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Test with message that has role but tests default behavior
|
|
messages = [{"role": "user", "content": "test message"}]
|
|
formatted = llm._format_messages_for_azure(messages)
|
|
|
|
assert formatted[0]["role"] == "user"
|
|
assert formatted[0]["content"] == "test message"
|
|
|
|
|
|
def test_azure_endpoint_detection_flags():
|
|
"""
|
|
Test that is_azure_openai_endpoint flag is set correctly
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com/openai/deployments/gpt-4"
|
|
}):
|
|
llm_openai = LLM(model="azure/gpt-4")
|
|
assert llm_openai.is_azure_openai_endpoint == True
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm_other = LLM(model="azure/mistral-large")
|
|
assert llm_other.is_azure_openai_endpoint == False
|
|
|
|
|
|
def test_azure_improved_error_messages():
|
|
"""
|
|
Test that improved error messages are provided for common HTTP errors
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
from azure.core.exceptions import HttpResponseError
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
error_401 = HttpResponseError(message="Unauthorized")
|
|
error_401.status_code = 401
|
|
mock_complete.side_effect = error_401
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("test")
|
|
|
|
error_404 = HttpResponseError(message="Not Found")
|
|
error_404.status_code = 404
|
|
mock_complete.side_effect = error_404
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("test")
|
|
|
|
error_429 = HttpResponseError(message="Rate Limited")
|
|
error_429.status_code = 429
|
|
mock_complete.side_effect = error_429
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("test")
|
|
|
|
|
|
def test_azure_api_version_properly_passed():
|
|
"""
|
|
Test that api_version is properly passed to the client
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com",
|
|
"AZURE_API_VERSION": "" # Clear env var to test default
|
|
}, clear=False):
|
|
llm = LLM(model="azure/gpt-4", api_version="2024-08-01")
|
|
assert llm.api_version == "2024-08-01"
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}, clear=True):
|
|
llm_default = LLM(model="azure/gpt-4")
|
|
assert llm_default.api_version == "2024-06-01" # Current default
|
|
|
|
|
|
def test_azure_timeout_and_max_retries_stored():
|
|
"""
|
|
Test that timeout and max_retries parameters are stored
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
timeout=60.0,
|
|
max_retries=5
|
|
)
|
|
|
|
assert llm.timeout == 60.0
|
|
assert llm.max_retries == 5
|
|
|
|
|
|
def test_azure_complete_params_include_optional_params():
|
|
"""
|
|
Test that optional parameters are included in completion params when set
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
temperature=0.7,
|
|
top_p=0.9,
|
|
frequency_penalty=0.5,
|
|
presence_penalty=0.3,
|
|
max_tokens=1000,
|
|
stop=["STOP", "END"]
|
|
)
|
|
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
|
|
assert params["temperature"] == 0.7
|
|
assert params["top_p"] == 0.9
|
|
assert params["frequency_penalty"] == 0.5
|
|
assert params["presence_penalty"] == 0.3
|
|
assert params["max_tokens"] == 1000
|
|
assert params["stop"] == ["STOP", "END"]
|
|
|
|
|
|
def test_azure_endpoint_validation_with_azure_prefix():
|
|
"""
|
|
Test that 'azure/' prefix is properly stripped when constructing endpoint
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4o-mini")
|
|
|
|
# Should strip 'azure/' prefix and use 'gpt-4o-mini' as deployment name
|
|
assert "gpt-4o-mini" in llm.endpoint
|
|
assert "azure/gpt-4o-mini" not in llm.endpoint
|
|
|
|
|
|
def test_azure_message_formatting_preserves_all_roles():
|
|
"""
|
|
Test that all message roles (system, user, assistant) are preserved correctly
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
messages = [
|
|
{"role": "system", "content": "System message"},
|
|
{"role": "user", "content": "User message"},
|
|
{"role": "assistant", "content": "Assistant message"},
|
|
{"role": "user", "content": "Another user message"}
|
|
]
|
|
|
|
formatted = llm._format_messages_for_azure(messages)
|
|
|
|
assert formatted[0]["role"] == "system"
|
|
assert formatted[0]["content"] == "System message"
|
|
assert formatted[1]["role"] == "user"
|
|
assert formatted[1]["content"] == "User message"
|
|
assert formatted[2]["role"] == "assistant"
|
|
assert formatted[2]["content"] == "Assistant message"
|
|
assert formatted[3]["role"] == "user"
|
|
assert formatted[3]["content"] == "Another user message"
|
|
|
|
|
|
def test_azure_deepseek_model_support():
|
|
"""
|
|
Test that DeepSeek and other non-OpenAI models work correctly with Azure AI Inference
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
# Test DeepSeek model
|
|
llm_deepseek = LLM(model="azure/deepseek-chat")
|
|
|
|
# Endpoint should not be modified for non-OpenAI endpoints
|
|
assert llm_deepseek.endpoint == "https://models.inference.ai.azure.com"
|
|
assert llm_deepseek.is_azure_openai_endpoint == False
|
|
|
|
# Model parameter should be included in completion params
|
|
params = llm_deepseek._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
assert "model" in params
|
|
assert params["model"] == "deepseek-chat"
|
|
|
|
# Should not be detected as OpenAI model (no function calling)
|
|
assert llm_deepseek.is_openai_model == False
|
|
assert llm_deepseek.supports_function_calling() == False
|
|
|
|
|
|
def test_azure_mistral_and_other_models():
|
|
"""
|
|
Test that various non-OpenAI models (Mistral, Llama, etc.) work with Azure AI Inference
|
|
"""
|
|
test_models = [
|
|
"mistral-large-latest",
|
|
"llama-3-70b-instruct",
|
|
"cohere-command-r-plus"
|
|
]
|
|
|
|
for model_name in test_models:
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(model=f"azure/{model_name}")
|
|
|
|
# Verify endpoint is not modified
|
|
assert llm.endpoint == "https://models.inference.ai.azure.com"
|
|
assert llm.is_azure_openai_endpoint == False
|
|
|
|
# Verify model parameter is included
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
assert "model" in params
|
|
assert params["model"] == model_name
|
|
|
|
|
|
def test_azure_structured_output_uses_json_object():
|
|
"""
|
|
Test that Azure uses json_object response_format instead of json_schema
|
|
for structured outputs (fixes issue #3906)
|
|
"""
|
|
from pydantic import BaseModel
|
|
|
|
class Greeting(BaseModel):
|
|
name: str
|
|
message: str
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Prepare params with response_model
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "Say hello"}],
|
|
response_model=Greeting
|
|
)
|
|
|
|
assert "response_format" in params
|
|
assert params["response_format"] == {"type": "json_object"}
|
|
assert "json_schema" not in params["response_format"]
|
|
|
|
|
|
def test_azure_structured_output_with_agent():
|
|
"""
|
|
Test that structured outputs work correctly with Azure models in agents
|
|
(replicates the issue from #3906)
|
|
"""
|
|
from pydantic import BaseModel
|
|
|
|
class Greeting(BaseModel):
|
|
name: str
|
|
message: str
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the Azure client response
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
mock_message = MagicMock()
|
|
mock_message.content = '{"name": "Alice", "message": "Hello, Alice!"}'
|
|
mock_message.tool_calls = None
|
|
|
|
mock_choice = MagicMock()
|
|
mock_choice.message = mock_message
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [mock_choice]
|
|
mock_response.usage = MagicMock(
|
|
prompt_tokens=10,
|
|
completion_tokens=20,
|
|
total_tokens=30
|
|
)
|
|
|
|
mock_complete.return_value = mock_response
|
|
|
|
result = llm.call(
|
|
messages=[{"role": "user", "content": "My name is Alice"}],
|
|
response_model=Greeting
|
|
)
|
|
|
|
# Verify the call was made
|
|
assert mock_complete.called
|
|
|
|
# Verify the params passed to complete
|
|
call_args = mock_complete.call_args
|
|
params = call_args[1] if call_args[1] else call_args[0][0]
|
|
|
|
if isinstance(params, dict) and "response_format" in params:
|
|
assert params["response_format"] == {"type": "json_object"}
|
|
|
|
assert result is not None
|
|
assert isinstance(result, str)
|
|
|
|
|
|
def test_azure_structured_output_non_openai_model():
|
|
"""
|
|
Test that non-OpenAI models don't get response_format parameter
|
|
"""
|
|
from pydantic import BaseModel
|
|
|
|
class TestModel(BaseModel):
|
|
field: str
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/mistral-large")
|
|
|
|
# Prepare params with response_model for non-OpenAI model
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}],
|
|
response_model=TestModel
|
|
)
|
|
|
|
assert "response_format" not in params
|
|
|