Files
crewAI/docs/en/tools/ai-ml/langchaintool.mdx
Tony Kipkemboi 1a1bb0ca3d docs: Docs updates (#3459)
* docs(cli): document device-code login and config reset guidance; renumber sections

* docs(cli): fix duplicate numbering (renumber Login/API Keys/Configuration sections)

* docs: Fix webhook documentation to include meta dict in all webhook payloads

- Add note explaining that meta objects from kickoff requests are included in all webhook payloads
- Update webhook examples to show proper payload structure including meta field
- Fix webhook examples to match actual API implementation
- Apply changes to English, Korean, and Portuguese documentation

Resolves the documentation gap where meta dict passing to webhooks was not documented despite being implemented in the API.

* WIP: CrewAI docs theme, changelog, GEO, localization

* docs(cli): fix merge markers; ensure mode: "wide"; convert ASCII tables to Markdown (en/pt-BR/ko)

* docs: add group icons across locales; split Automation/Integrations; update tools overviews and links
2025-09-05 17:40:11 -04:00

60 lines
2.1 KiB
Plaintext

---
title: LangChain Tool
description: The `LangChainTool` is a wrapper for LangChain tools and query engines.
icon: link
mode: "wide"
---
## `LangChainTool`
<Info>
CrewAI seamlessly integrates with LangChain's comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
</Info>
```python Code
import os
from dotenv import load_dotenv
from crewai import Agent, Task, Crew
from crewai.tools import BaseTool
from pydantic import Field
from langchain_community.utilities import GoogleSerperAPIWrapper
# Set up your SERPER_API_KEY key in an .env file, eg:
# SERPER_API_KEY=<your api key>
load_dotenv()
search = GoogleSerperAPIWrapper()
class SearchTool(BaseTool):
name: str = "Search"
description: str = "Useful for search-based queries. Use this to find current information about markets, companies, and trends."
search: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper)
def _run(self, query: str) -> str:
"""Execute the search query and return results"""
try:
return self.search.run(query)
except Exception as e:
return f"Error performing search: {str(e)}"
# Create Agents
researcher = Agent(
role='Research Analyst',
goal='Gather current market data and trends',
backstory="""You are an expert research analyst with years of experience in
gathering market intelligence. You're known for your ability to find
relevant and up-to-date market information and present it in a clear,
actionable format.""",
tools=[SearchTool()],
verbose=True
)
# rest of the code ...
```
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms,
and the flexibility of tool arguments to optimize your agents' performance and capabilities.