# FAISS Search Tool The FAISS Search Tool enables efficient vector similarity search using Facebook AI Similarity Search (FAISS). ## Usage ```python from crewai import Agent from crewai.tools import FAISSSearchTool # Initialize tool search_tool = FAISSSearchTool( index_type="L2", # or "IP" for inner product dimension=384, # Match your embedder's dimension embedder_config={ "provider": "fastembed", "model": "BAAI/bge-small-en-v1.5" } ) # Add documents search_tool.add_texts([ "Document 1 content", "Document 2 content", # ... ]) # Create agent with tool agent = Agent( role="researcher", goal="Find relevant information", tools=[search_tool] ) ``` ## Configuration | Parameter | Type | Description | |-----------|------|-------------| | index_type | str | FAISS index type ("L2" or "IP") | | dimension | int | Embedding dimension | | embedder_config | dict | Embedder configuration | ## Parameters ### index_type - `"L2"`: Euclidean distance (default) - `"IP"`: Inner product similarity ### dimension Default is 384, which matches the BAAI/bge-small-en-v1.5 model. Adjust this to match your chosen embedder model's output dimension. ### embedder_config Configuration for the embedding model. Supports all CrewAI embedder providers: - fastembed (default) - openai - google - ollama