from typing import Optional, Type try: from embedchain.models.data_type import DataType EMBEDCHAIN_AVAILABLE = True except ImportError: EMBEDCHAIN_AVAILABLE = False from pydantic import BaseModel, Field from ..rag.rag_tool import RagTool class FixedCSVSearchToolSchema(BaseModel): """Input for CSVSearchTool.""" search_query: str = Field( ..., description="Mandatory search query you want to use to search the CSV's content", ) class CSVSearchToolSchema(FixedCSVSearchToolSchema): """Input for CSVSearchTool.""" csv: str = Field(..., description="File path or URL of a CSV file to be searched") class CSVSearchTool(RagTool): name: str = "Search a CSV's content" description: str = ( "A tool that can be used to semantic search a query from a CSV's content." ) args_schema: Type[BaseModel] = CSVSearchToolSchema def __init__(self, csv: Optional[str] = None, **kwargs): super().__init__(**kwargs) if csv is not None: self.add(csv) self.description = f"A tool that can be used to semantic search a query the {csv} CSV's content." self.args_schema = FixedCSVSearchToolSchema self._generate_description() def add(self, csv: str) -> None: if not EMBEDCHAIN_AVAILABLE: raise ImportError("embedchain is not installed. Please install it with `pip install crewai-tools[embedchain]`") super().add(csv, data_type=DataType.CSV) def _run( self, search_query: str, csv: Optional[str] = None, ) -> str: if csv is not None: self.add(csv) return super()._run(query=search_query)