# Tests for enums from enum import Enum import json import os from unittest.mock import MagicMock, Mock, patch from crewai.llm import LLM from crewai.utilities.converter import ( Converter, ConverterError, convert_to_model, convert_with_instructions, create_converter, generate_model_description, get_conversion_instructions, handle_partial_json, validate_model, ) from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser from pydantic import BaseModel import pytest @pytest.fixture(scope="module") def vcr_config(request: pytest.FixtureRequest) -> dict[str, str]: return { "cassette_library_dir": os.path.join(os.path.dirname(__file__), "cassettes"), } # Sample Pydantic models for testing class EmailResponse(BaseModel): previous_message_content: str class EmailResponses(BaseModel): responses: list[EmailResponse] class SimpleModel(BaseModel): name: str age: int class NestedModel(BaseModel): id: int data: SimpleModel class Address(BaseModel): street: str city: str zip_code: str class Person(BaseModel): name: str age: int address: Address class CustomConverter(Converter): pass # Fixtures @pytest.fixture def mock_agent() -> Mock: agent = Mock() agent.function_calling_llm = None agent.llm = Mock() return agent # Tests for convert_to_model def test_convert_to_model_with_valid_json() -> None: result = '{"name": "John", "age": 30}' output = convert_to_model(result, SimpleModel, None, None) assert isinstance(output, SimpleModel) assert output.name == "John" assert output.age == 30 def test_convert_to_model_with_invalid_json() -> None: result = '{"name": "John", "age": "thirty"}' with patch("crewai.utilities.converter.handle_partial_json") as mock_handle: mock_handle.return_value = "Fallback result" output = convert_to_model(result, SimpleModel, None, None) assert output == "Fallback result" def test_convert_to_model_with_no_model() -> None: result = "Plain text" output = convert_to_model(result, None, None, None) assert output == "Plain text" def test_convert_to_model_with_special_characters() -> None: json_string_test = """ { "responses": [ { "previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on" } ] } """ output = convert_to_model(json_string_test, EmailResponses, None, None) assert isinstance(output, EmailResponses) assert len(output.responses) == 1 assert ( output.responses[0].previous_message_content == "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on" ) def test_convert_to_model_with_escaped_special_characters() -> None: json_string_test = json.dumps( { "responses": [ { "previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on" } ] } ) output = convert_to_model(json_string_test, EmailResponses, None, None) assert isinstance(output, EmailResponses) assert len(output.responses) == 1 assert ( output.responses[0].previous_message_content == "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on" ) def test_convert_to_model_with_multiple_special_characters() -> None: json_string_test = """ { "responses": [ { "previous_message_content": "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline" } ] } """ output = convert_to_model(json_string_test, EmailResponses, None, None) assert isinstance(output, EmailResponses) assert len(output.responses) == 1 assert ( output.responses[0].previous_message_content == "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline" ) # Tests for validate_model def test_validate_model_pydantic_output() -> None: result = '{"name": "Alice", "age": 25}' output = validate_model(result, SimpleModel, False) assert isinstance(output, SimpleModel) assert output.name == "Alice" assert output.age == 25 def test_validate_model_json_output() -> None: result = '{"name": "Bob", "age": 40}' output = validate_model(result, SimpleModel, True) assert isinstance(output, dict) assert output == {"name": "Bob", "age": 40} # Tests for handle_partial_json def test_handle_partial_json_with_valid_partial() -> None: result = 'Some text {"name": "Charlie", "age": 35} more text' output = handle_partial_json(result, SimpleModel, False, None) assert isinstance(output, SimpleModel) assert output.name == "Charlie" assert output.age == 35 def test_handle_partial_json_with_invalid_partial(mock_agent: Mock) -> None: result = "No valid JSON here" with patch("crewai.utilities.converter.convert_with_instructions") as mock_convert: mock_convert.return_value = "Converted result" output = handle_partial_json(result, SimpleModel, False, mock_agent) assert output == "Converted result" # Tests for convert_with_instructions @patch("crewai.utilities.converter.create_converter") @patch("crewai.utilities.converter.get_conversion_instructions") def test_convert_with_instructions_success( mock_get_instructions: Mock, mock_create_converter: Mock, mock_agent: Mock ) -> None: mock_get_instructions.return_value = "Instructions" mock_converter = Mock() mock_converter.to_pydantic.return_value = SimpleModel(name="David", age=50) mock_create_converter.return_value = mock_converter result = "Some text to convert" output = convert_with_instructions(result, SimpleModel, False, mock_agent) assert isinstance(output, SimpleModel) assert output.name == "David" assert output.age == 50 @patch("crewai.utilities.converter.create_converter") @patch("crewai.utilities.converter.get_conversion_instructions") def test_convert_with_instructions_failure( mock_get_instructions: Mock, mock_create_converter: Mock, mock_agent: Mock ) -> None: mock_get_instructions.return_value = "Instructions" mock_converter = Mock() mock_converter.to_pydantic.return_value = ConverterError("Conversion failed") mock_create_converter.return_value = mock_converter result = "Some text to convert" with patch("crewai.utilities.converter.Printer") as mock_printer: output = convert_with_instructions(result, SimpleModel, False, mock_agent) assert output == result mock_printer.return_value.print.assert_called_once() # Tests for get_conversion_instructions def test_get_conversion_instructions_gpt() -> None: llm = LLM(model="gpt-4o-mini") with patch.object(LLM, "supports_function_calling") as supports_function_calling: supports_function_calling.return_value = True instructions = get_conversion_instructions(SimpleModel, llm) model_schema = PydanticSchemaParser(model=SimpleModel).get_schema() expected_instructions = ( "Please convert the following text into valid JSON.\n\n" "Output ONLY the valid JSON and nothing else.\n\n" "Use this format exactly:\n```json\n" f"{model_schema}\n```" ) assert instructions == expected_instructions def test_get_conversion_instructions_non_gpt() -> None: llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434") with patch.object(LLM, "supports_function_calling", return_value=False): instructions = get_conversion_instructions(SimpleModel, llm) # Check that the JSON schema is properly formatted assert "Please convert the following text into valid JSON" in instructions assert "Output ONLY the valid JSON and nothing else" in instructions assert "Use this format exactly" in instructions assert "```json" in instructions assert '"type": "object"' in instructions assert '"properties"' in instructions assert "'type': 'json_schema'" not in instructions # Tests for is_gpt def test_supports_function_calling_true() -> None: llm = LLM(model="gpt-4o") assert llm.supports_function_calling() is True def test_supports_function_calling_false() -> None: llm = LLM(model="non-existent-model", is_litellm=True) assert llm.supports_function_calling() is False def test_create_converter_with_mock_agent() -> None: mock_agent = MagicMock() mock_agent.get_output_converter.return_value = MagicMock(spec=Converter) converter = create_converter( agent=mock_agent, llm=Mock(), text="Sample", model=SimpleModel, instructions="Convert", ) assert isinstance(converter, Converter) mock_agent.get_output_converter.assert_called_once() def test_create_converter_with_custom_converter() -> None: converter = create_converter( converter_cls=CustomConverter, llm=LLM(model="gpt-4o-mini"), text="Sample", model=SimpleModel, instructions="Convert", ) assert isinstance(converter, CustomConverter) def test_create_converter_fails_without_agent_or_converter_cls() -> None: with pytest.raises( ValueError, match="Either agent or converter_cls must be provided" ): create_converter( llm=Mock(), text="Sample", model=SimpleModel, instructions="Convert" ) def test_generate_model_description_simple_model() -> None: description = generate_model_description(SimpleModel) # generate_model_description now returns a JSON schema dict assert isinstance(description, dict) assert description["type"] == "json_schema" assert description["json_schema"]["name"] == "SimpleModel" assert description["json_schema"]["strict"] is True assert "name" in description["json_schema"]["schema"]["properties"] assert "age" in description["json_schema"]["schema"]["properties"] def test_generate_model_description_nested_model() -> None: description = generate_model_description(NestedModel) # generate_model_description now returns a JSON schema dict assert isinstance(description, dict) assert description["type"] == "json_schema" assert description["json_schema"]["name"] == "NestedModel" assert description["json_schema"]["strict"] is True assert "id" in description["json_schema"]["schema"]["properties"] assert "data" in description["json_schema"]["schema"]["properties"] def test_generate_model_description_optional_field() -> None: class ModelWithOptionalField(BaseModel): name: str age: int | None description = generate_model_description(ModelWithOptionalField) # generate_model_description now returns a JSON schema dict assert isinstance(description, dict) assert description["type"] == "json_schema" assert description["json_schema"]["name"] == "ModelWithOptionalField" assert description["json_schema"]["strict"] is True def test_generate_model_description_list_field() -> None: class ModelWithListField(BaseModel): items: list[int] description = generate_model_description(ModelWithListField) # generate_model_description now returns a JSON schema dict assert isinstance(description, dict) assert description["type"] == "json_schema" assert description["json_schema"]["name"] == "ModelWithListField" assert description["json_schema"]["strict"] is True def test_generate_model_description_dict_field() -> None: class ModelWithDictField(BaseModel): attributes: dict[str, int] description = generate_model_description(ModelWithDictField) # generate_model_description now returns a JSON schema dict assert isinstance(description, dict) assert description["type"] == "json_schema" assert description["json_schema"]["name"] == "ModelWithDictField" assert description["json_schema"]["strict"] is True @pytest.mark.vcr(filter_headers=["authorization"]) def test_convert_with_instructions() -> None: llm = LLM(model="gpt-4o-mini") sample_text = "Name: Alice, Age: 30" instructions = get_conversion_instructions(SimpleModel, llm) converter = Converter( llm=llm, text=sample_text, model=SimpleModel, instructions=instructions, ) # Act output = converter.to_pydantic() # Assert assert isinstance(output, SimpleModel) assert output.name == "Alice" assert output.age == 30 @pytest.mark.vcr(filter_headers=["authorization"]) def test_converter_with_llama3_2_model() -> None: llm = LLM(model="openrouter/meta-llama/llama-3.2-3b-instruct") sample_text = "Name: Alice Llama, Age: 30" instructions = get_conversion_instructions(SimpleModel, llm) converter = Converter( llm=llm, text=sample_text, model=SimpleModel, instructions=instructions, ) output = converter.to_pydantic() assert isinstance(output, SimpleModel) assert output.name == "Alice Llama" assert output.age == 30 def test_converter_with_llama3_1_model() -> None: llm = Mock(spec=LLM) llm.supports_function_calling.return_value = True llm.call.return_value = '{"name": "Alice Llama", "age": 30}' sample_text = "Name: Alice Llama, Age: 30" instructions = get_conversion_instructions(SimpleModel, llm) converter = Converter( llm=llm, text=sample_text, model=SimpleModel, instructions=instructions, ) output = converter.to_pydantic() assert isinstance(output, SimpleModel) assert output.name == "Alice Llama" assert output.age == 30 @pytest.mark.vcr(filter_headers=["authorization"]) def test_converter_with_nested_model() -> None: llm = LLM(model="gpt-4o-mini") sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345" instructions = get_conversion_instructions(Person, llm) converter = Converter( llm=llm, text=sample_text, model=Person, instructions=instructions, ) output = converter.to_pydantic() assert isinstance(output, Person) assert output.name == "John Doe" assert output.age == 30 assert isinstance(output.address, Address) assert output.address.street == "123 Main St" assert output.address.city == "Anytown" assert output.address.zip_code == "12345" # Tests for error handling def test_converter_error_handling() -> None: llm = Mock(spec=LLM) llm.supports_function_calling.return_value = False llm.call.return_value = "Invalid JSON" sample_text = "Name: Alice, Age: 30" instructions = get_conversion_instructions(SimpleModel, llm) converter = Converter( llm=llm, text=sample_text, model=SimpleModel, instructions=instructions, ) with pytest.raises(ConverterError) as exc_info: converter.to_pydantic() assert "Failed to convert text into a Pydantic model" in str(exc_info.value) # Tests for retry logic def test_converter_retry_logic() -> None: llm = Mock(spec=LLM) llm.supports_function_calling.return_value = False llm.call.side_effect = [ "Invalid JSON", "Still invalid", '{"name": "Retry Alice", "age": 30}', ] sample_text = "Name: Retry Alice, Age: 30" instructions = get_conversion_instructions(SimpleModel, llm) converter = Converter( llm=llm, text=sample_text, model=SimpleModel, instructions=instructions, max_attempts=3, ) output = converter.to_pydantic() assert isinstance(output, SimpleModel) assert output.name == "Retry Alice" assert output.age == 30 assert llm.call.call_count == 3 # Tests for optional fields def test_converter_with_optional_fields() -> None: class OptionalModel(BaseModel): name: str age: int | None llm = Mock(spec=LLM) llm.supports_function_calling.return_value = False # Simulate the LLM's response with 'age' explicitly set to null llm.call.return_value = '{"name": "Bob", "age": null}' sample_text = "Name: Bob, age: None" instructions = get_conversion_instructions(OptionalModel, llm) converter = Converter( llm=llm, text=sample_text, model=OptionalModel, instructions=instructions, ) output = converter.to_pydantic() assert isinstance(output, OptionalModel) assert output.name == "Bob" assert output.age is None # Tests for list fields def test_converter_with_list_field() -> None: class ListModel(BaseModel): items: list[int] llm = Mock(spec=LLM) llm.supports_function_calling.return_value = False llm.call.return_value = '{"items": [1, 2, 3]}' sample_text = "Items: 1, 2, 3" instructions = get_conversion_instructions(ListModel, llm) converter = Converter( llm=llm, text=sample_text, model=ListModel, instructions=instructions, ) output = converter.to_pydantic() assert isinstance(output, ListModel) assert output.items == [1, 2, 3] def test_converter_with_enum() -> None: class Color(Enum): RED = "red" GREEN = "green" BLUE = "blue" class EnumModel(BaseModel): name: str color: Color llm = Mock(spec=LLM) llm.supports_function_calling.return_value = False llm.call.return_value = '{"name": "Alice", "color": "red"}' sample_text = "Name: Alice, Color: Red" instructions = get_conversion_instructions(EnumModel, llm) converter = Converter( llm=llm, text=sample_text, model=EnumModel, instructions=instructions, ) output = converter.to_pydantic() assert isinstance(output, EnumModel) assert output.name == "Alice" assert output.color == Color.RED # Tests for ambiguous input def test_converter_with_ambiguous_input() -> None: llm = Mock(spec=LLM) llm.supports_function_calling.return_value = False llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}' sample_text = "Charlie is thirty years old" instructions = get_conversion_instructions(SimpleModel, llm) converter = Converter( llm=llm, text=sample_text, model=SimpleModel, instructions=instructions, ) with pytest.raises(ConverterError) as exc_info: converter.to_pydantic() assert "failed to convert text into a pydantic model" in str(exc_info.value).lower() # Tests for function calling support def test_converter_with_function_calling() -> None: llm = Mock(spec=LLM) llm.supports_function_calling.return_value = True # Mock the llm.call to return a valid JSON string llm.call.return_value = '{"name": "Eve", "age": 35}' converter = Converter( llm=llm, text="Name: Eve, Age: 35", model=SimpleModel, instructions="Convert this text.", ) output = converter.to_pydantic() assert isinstance(output, SimpleModel) assert output.name == "Eve" assert output.age == 35 # Verify llm.call was called with correct parameters llm.call.assert_called_once() call_args = llm.call.call_args assert call_args[1]["response_model"] == SimpleModel def test_generate_model_description_union_field() -> None: class UnionModel(BaseModel): field: int | str | None description = generate_model_description(UnionModel) # generate_model_description now returns a JSON schema dict assert isinstance(description, dict) assert description["type"] == "json_schema" assert description["json_schema"]["name"] == "UnionModel" assert description["json_schema"]["strict"] is True def test_internal_instructor_with_openai_provider() -> None: """Test InternalInstructor with OpenAI provider using registry pattern.""" from crewai.utilities.internal_instructor import InternalInstructor # Mock LLM with OpenAI provider mock_llm = Mock() mock_llm.is_litellm = False mock_llm.model = "gpt-4o" mock_llm.provider = "openai" # Mock instructor client mock_client = Mock() mock_client.chat.completions.create.return_value = SimpleModel(name="Test", age=25) # Patch the instructor import at the method level with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client instructor = InternalInstructor( content="Test content", model=SimpleModel, llm=mock_llm ) result = instructor.to_pydantic() assert isinstance(result, SimpleModel) assert result.name == "Test" assert result.age == 25 # Verify the method was called with the correct LLM mock_create_client.assert_called_once() def test_internal_instructor_with_anthropic_provider() -> None: """Test InternalInstructor with Anthropic provider using registry pattern.""" from crewai.utilities.internal_instructor import InternalInstructor # Mock LLM with Anthropic provider mock_llm = Mock() mock_llm.is_litellm = False mock_llm.model = "claude-3-5-sonnet-20241022" mock_llm.provider = "anthropic" # Mock instructor client mock_client = Mock() mock_client.chat.completions.create.return_value = SimpleModel(name="Bob", age=25) # Patch the instructor import at the method level with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client instructor = InternalInstructor( content="Name: Bob, Age: 25", model=SimpleModel, llm=mock_llm ) result = instructor.to_pydantic() assert isinstance(result, SimpleModel) assert result.name == "Bob" assert result.age == 25 # Verify the method was called with the correct LLM mock_create_client.assert_called_once() def test_factory_pattern_registry_extensibility() -> None: """Test that the factory pattern registry works with different providers.""" from crewai.utilities.internal_instructor import InternalInstructor # Test with OpenAI provider mock_llm_openai = Mock() mock_llm_openai.is_litellm = False mock_llm_openai.model = "gpt-4o-mini" mock_llm_openai.provider = "openai" mock_client_openai = Mock() mock_client_openai.chat.completions.create.return_value = SimpleModel(name="Alice", age=30) with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client_openai instructor_openai = InternalInstructor( content="Name: Alice, Age: 30", model=SimpleModel, llm=mock_llm_openai ) result_openai = instructor_openai.to_pydantic() assert isinstance(result_openai, SimpleModel) assert result_openai.name == "Alice" assert result_openai.age == 30 # Test with Anthropic provider mock_llm_anthropic = Mock() mock_llm_anthropic.is_litellm = False mock_llm_anthropic.model = "claude-3-5-sonnet-20241022" mock_llm_anthropic.provider = "anthropic" mock_client_anthropic = Mock() mock_client_anthropic.chat.completions.create.return_value = SimpleModel(name="Bob", age=25) with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client_anthropic instructor_anthropic = InternalInstructor( content="Name: Bob, Age: 25", model=SimpleModel, llm=mock_llm_anthropic ) result_anthropic = instructor_anthropic.to_pydantic() assert isinstance(result_anthropic, SimpleModel) assert result_anthropic.name == "Bob" assert result_anthropic.age == 25 # Test with Bedrock provider mock_llm_bedrock = Mock() mock_llm_bedrock.is_litellm = False mock_llm_bedrock.model = "claude-3-5-sonnet-20241022" mock_llm_bedrock.provider = "bedrock" mock_client_bedrock = Mock() mock_client_bedrock.chat.completions.create.return_value = SimpleModel(name="Charlie", age=35) with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client_bedrock instructor_bedrock = InternalInstructor( content="Name: Charlie, Age: 35", model=SimpleModel, llm=mock_llm_bedrock ) result_bedrock = instructor_bedrock.to_pydantic() assert isinstance(result_bedrock, SimpleModel) assert result_bedrock.name == "Charlie" assert result_bedrock.age == 35 # Test with Google provider mock_llm_google = Mock() mock_llm_google.is_litellm = False mock_llm_google.model = "gemini-1.5-flash" mock_llm_google.provider = "google" mock_client_google = Mock() mock_client_google.chat.completions.create.return_value = SimpleModel(name="Diana", age=28) with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client_google instructor_google = InternalInstructor( content="Name: Diana, Age: 28", model=SimpleModel, llm=mock_llm_google ) result_google = instructor_google.to_pydantic() assert isinstance(result_google, SimpleModel) assert result_google.name == "Diana" assert result_google.age == 28 # Test with Azure provider mock_llm_azure = Mock() mock_llm_azure.is_litellm = False mock_llm_azure.model = "gpt-4o" mock_llm_azure.provider = "azure" mock_client_azure = Mock() mock_client_azure.chat.completions.create.return_value = SimpleModel(name="Eve", age=32) with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client_azure instructor_azure = InternalInstructor( content="Name: Eve, Age: 32", model=SimpleModel, llm=mock_llm_azure ) result_azure = instructor_azure.to_pydantic() assert isinstance(result_azure, SimpleModel) assert result_azure.name == "Eve" assert result_azure.age == 32 def test_internal_instructor_with_bedrock_provider() -> None: """Test InternalInstructor with AWS Bedrock provider using registry pattern.""" from crewai.utilities.internal_instructor import InternalInstructor # Mock LLM with Bedrock provider mock_llm = Mock() mock_llm.is_litellm = False mock_llm.model = "claude-3-5-sonnet-20241022" mock_llm.provider = "bedrock" # Mock instructor client mock_client = Mock() mock_client.chat.completions.create.return_value = SimpleModel(name="Charlie", age=35) # Patch the instructor import at the method level with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client instructor = InternalInstructor( content="Name: Charlie, Age: 35", model=SimpleModel, llm=mock_llm ) result = instructor.to_pydantic() assert isinstance(result, SimpleModel) assert result.name == "Charlie" assert result.age == 35 # Verify the method was called with the correct LLM mock_create_client.assert_called_once() def test_internal_instructor_with_gemini_provider() -> None: """Test InternalInstructor with Google Gemini provider using registry pattern.""" from crewai.utilities.internal_instructor import InternalInstructor # Mock LLM with Gemini provider mock_llm = Mock() mock_llm.is_litellm = False mock_llm.model = "gemini-1.5-flash" mock_llm.provider = "google" # Mock instructor client mock_client = Mock() mock_client.chat.completions.create.return_value = SimpleModel(name="Diana", age=28) # Patch the instructor import at the method level with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client instructor = InternalInstructor( content="Name: Diana, Age: 28", model=SimpleModel, llm=mock_llm ) result = instructor.to_pydantic() assert isinstance(result, SimpleModel) assert result.name == "Diana" assert result.age == 28 # Verify the method was called with the correct LLM mock_create_client.assert_called_once() def test_internal_instructor_with_azure_provider() -> None: """Test InternalInstructor with Azure OpenAI provider using registry pattern.""" from crewai.utilities.internal_instructor import InternalInstructor # Mock LLM with Azure provider mock_llm = Mock() mock_llm.is_litellm = False mock_llm.model = "gpt-4o" mock_llm.provider = "azure" # Mock instructor client mock_client = Mock() mock_client.chat.completions.create.return_value = SimpleModel(name="Eve", age=32) # Patch the instructor import at the method level with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.return_value = mock_client instructor = InternalInstructor( content="Name: Eve, Age: 32", model=SimpleModel, llm=mock_llm ) result = instructor.to_pydantic() assert isinstance(result, SimpleModel) assert result.name == "Eve" assert result.age == 32 # Verify the method was called with the correct LLM mock_create_client.assert_called_once() def test_internal_instructor_unsupported_provider() -> None: """Test InternalInstructor with unsupported provider raises appropriate error.""" from crewai.utilities.internal_instructor import InternalInstructor # Mock LLM with unsupported provider mock_llm = Mock() mock_llm.is_litellm = False mock_llm.model = "unsupported-model" mock_llm.provider = "unsupported" # Mock the _create_instructor_client method to raise an error for unsupported providers with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client: mock_create_client.side_effect = Exception("Unsupported provider: unsupported") # This should raise an error when trying to create the instructor client with pytest.raises(Exception) as exc_info: instructor = InternalInstructor( content="Test content", model=SimpleModel, llm=mock_llm ) instructor.to_pydantic() # Verify it's the expected error assert "Unsupported provider" in str(exc_info.value) def test_internal_instructor_real_unsupported_provider() -> None: """Test InternalInstructor with real unsupported provider using actual instructor library.""" from crewai.utilities.internal_instructor import InternalInstructor # Mock LLM with unsupported provider that would actually fail with instructor mock_llm = Mock() mock_llm.is_litellm = False mock_llm.model = "unsupported-model" mock_llm.provider = "unsupported" # This should raise a ConfigurationError from the real instructor library with pytest.raises(Exception) as exc_info: instructor = InternalInstructor( content="Test content", model=SimpleModel, llm=mock_llm ) instructor.to_pydantic() # Verify it's a configuration error about unsupported provider assert "Unsupported provider" in str(exc_info.value) or "unsupported" in str(exc_info.value).lower()