--- title: 협업 description: CrewAI 팀 내에서 에이전트가 함께 작업하고, 작업을 위임하며, 효과적으로 소통하는 방법에 대해 설명합니다. icon: screen-users --- ## 개요 CrewAI에서의 협업은 에이전트들이 팀으로서 함께 작업하며, 각자의 전문성을 활용하기 위해 작업을 위임하고 질문을 주고받을 수 있도록 합니다. `allow_delegation=True`로 설정하면, 에이전트들은 자동으로 강력한 협업 도구에 접근할 수 있습니다. ## 빠른 시작: 협업 활성화 ```python from crewai import Agent, Crew, Task # Enable collaboration for agents researcher = Agent( role="Research Specialist", goal="Conduct thorough research on any topic", backstory="Expert researcher with access to various sources", allow_delegation=True, # 🔑 Key setting for collaboration verbose=True ) writer = Agent( role="Content Writer", goal="Create engaging content based on research", backstory="Skilled writer who transforms research into compelling content", allow_delegation=True, # 🔑 Enables asking questions to other agents verbose=True ) # Agents can now collaborate automatically crew = Crew( agents=[researcher, writer], tasks=[...], verbose=True ) ``` ## 에이전트 협업 방식 `allow_delegation=True`로 설정하면, CrewAI는 에이전트에게 두 가지 강력한 도구를 자동으로 제공합니다. ### 1. **업무 위임 도구** 에이전트가 특정 전문성을 가진 팀원에게 작업을 할당할 수 있습니다. ```python # Agent automatically gets this tool: # Delegate work to coworker(task: str, context: str, coworker: str) ``` ### 2. **질문하기 도구** 에이전트가 동료로부터 정보를 수집하기 위해 특정 질문을 할 수 있게 해줍니다. ```python # Agent automatically gets this tool: # Ask question to coworker(question: str, context: str, coworker: str) ``` ## 협업의 실제 아래는 에이전트들이 콘텐츠 제작 작업에 협력하는 완성된 예시입니다: ```python from crewai import Agent, Crew, Task, Process # Create collaborative agents researcher = Agent( role="Research Specialist", goal="Find accurate, up-to-date information on any topic", backstory="""You're a meticulous researcher with expertise in finding reliable sources and fact-checking information across various domains.""", allow_delegation=True, verbose=True ) writer = Agent( role="Content Writer", goal="Create engaging, well-structured content", backstory="""You're a skilled content writer who excels at transforming research into compelling, readable content for different audiences.""", allow_delegation=True, verbose=True ) editor = Agent( role="Content Editor", goal="Ensure content quality and consistency", backstory="""You're an experienced editor with an eye for detail, ensuring content meets high standards for clarity and accuracy.""", allow_delegation=True, verbose=True ) # Create a task that encourages collaboration article_task = Task( description="""Write a comprehensive 1000-word article about 'The Future of AI in Healthcare'. The article should include: - Current AI applications in healthcare - Emerging trends and technologies - Potential challenges and ethical considerations - Expert predictions for the next 5 years Collaborate with your teammates to ensure accuracy and quality.""", expected_output="A well-researched, engaging 1000-word article with proper structure and citations", agent=writer # Writer leads, but can delegate research to researcher ) # Create collaborative crew crew = Crew( agents=[researcher, writer, editor], tasks=[article_task], process=Process.sequential, verbose=True ) result = crew.kickoff() ``` ## 협업 패턴 ### 패턴 1: 조사 → 작성 → 편집 ```python research_task = Task( description="Research the latest developments in quantum computing", expected_output="Comprehensive research summary with key findings and sources", agent=researcher ) writing_task = Task( description="Write an article based on the research findings", expected_output="Engaging 800-word article about quantum computing", agent=writer, context=[research_task] # Gets research output as context ) editing_task = Task( description="Edit and polish the article for publication", expected_output="Publication-ready article with improved clarity and flow", agent=editor, context=[writing_task] # Gets article draft as context ) ``` ### 패턴 2: 협업 단일 작업 ```python collaborative_task = Task( description="""Create a marketing strategy for a new AI product. Writer: Focus on messaging and content strategy Researcher: Provide market analysis and competitor insights Work together to create a comprehensive strategy.""", expected_output="Complete marketing strategy with research backing", agent=writer # Lead agent, but can delegate to researcher ) ``` ## 계층적 협업 복잡한 프로젝트의 경우, 매니저 에이전트를 활용하여 계층적 프로세스를 사용하세요: ```python from crewai import Agent, Crew, Task, Process # Manager agent coordinates the team manager = Agent( role="Project Manager", goal="Coordinate team efforts and ensure project success", backstory="Experienced project manager skilled at delegation and quality control", allow_delegation=True, verbose=True ) # Specialist agents researcher = Agent( role="Researcher", goal="Provide accurate research and analysis", backstory="Expert researcher with deep analytical skills", allow_delegation=False, # Specialists focus on their expertise verbose=True ) writer = Agent( role="Writer", goal="Create compelling content", backstory="Skilled writer who creates engaging content", allow_delegation=False, verbose=True ) # Manager-led task project_task = Task( description="Create a comprehensive market analysis report with recommendations", expected_output="Executive summary, detailed analysis, and strategic recommendations", agent=manager # Manager will delegate to specialists ) # Hierarchical crew crew = Crew( agents=[manager, researcher, writer], tasks=[project_task], process=Process.hierarchical, # Manager coordinates everything manager_llm="gpt-4o", # Specify LLM for manager verbose=True ) ``` ## 협업을 위한 모범 사례 ### 1. **명확한 역할 정의** ```python # ✅ Good: Specific, complementary roles researcher = Agent(role="Market Research Analyst", ...) writer = Agent(role="Technical Content Writer", ...) # ❌ Avoid: Overlapping or vague roles agent1 = Agent(role="General Assistant", ...) agent2 = Agent(role="Helper", ...) ``` ### 2. **전략적 위임 활성화** ```python # ✅ Enable delegation for coordinators and generalists lead_agent = Agent( role="Content Lead", allow_delegation=True, # Can delegate to specialists ... ) # ✅ Disable for focused specialists (optional) specialist_agent = Agent( role="Data Analyst", allow_delegation=False, # Focuses on core expertise ... ) ``` ### 3. **컨텍스트 공유** ```python # ✅ Use context parameter for task dependencies writing_task = Task( description="Write article based on research", agent=writer, context=[research_task], # Shares research results ... ) ``` ### 4. **명확한 작업 설명** ```python # ✅ 구체적이고 실행 가능한 설명 Task( description="""Research competitors in the AI chatbot space. Focus on: pricing models, key features, target markets. Provide data in a structured format.""", ... ) # ❌ 협업에 도움이 되지 않는 모호한 설명 Task(description="Do some research about chatbots", ...) ``` ## 협업 문제 해결 ### 문제: 에이전트들이 협업하지 않음 **증상:** 에이전트들이 각자 작업하며, 위임이 이루어지지 않음 ```python # ✅ Solution: Ensure delegation is enabled agent = Agent( role="...", allow_delegation=True, # This is required! ... ) ``` ### 문제: 지나친 이중 확인 **증상:** 에이전트가 과도하게 질문을 하여 진행이 느려짐 ```python # ✅ Solution: Provide better context and specific roles Task( description="""Write a technical blog post about machine learning. Context: Target audience is software developers with basic ML knowledge. Length: 1200 words Include: code examples, practical applications, best practices If you need specific technical details, delegate research to the researcher.""", ... ) ``` ### 문제: 위임 루프 **증상:** 에이전트들이 무한히 서로에게 위임함 ```python # ✅ Solution: Clear hierarchy and responsibilities manager = Agent(role="Manager", allow_delegation=True) specialist1 = Agent(role="Specialist A", allow_delegation=False) # No re-delegation specialist2 = Agent(role="Specialist B", allow_delegation=False) ``` ## 고급 협업 기능 ### 맞춤 협업 규칙 ```python # Set specific collaboration guidelines in agent backstory agent = Agent( role="Senior Developer", backstory="""You lead development projects and coordinate with team members. Collaboration guidelines: - Delegate research tasks to the Research Analyst - Ask the Designer for UI/UX guidance - Consult the QA Engineer for testing strategies - Only escalate blocking issues to the Project Manager""", allow_delegation=True ) ``` ### 협업 모니터링 ```python def track_collaboration(output): """Track collaboration patterns""" if "Delegate work to coworker" in output.raw: print("🤝 Delegation occurred") if "Ask question to coworker" in output.raw: print("❓ Question asked") crew = Crew( agents=[...], tasks=[...], step_callback=track_collaboration, # Monitor collaboration verbose=True ) ``` ## 메모리와 학습 에이전트가 과거 협업을 기억할 수 있도록 합니다: ```python agent = Agent( role="Content Lead", memory=True, # Remembers past interactions allow_delegation=True, verbose=True ) ``` 메모리가 활성화되면, 에이전트는 이전 협업에서 학습하여 시간이 지남에 따라 더 나은 위임 결정을 내릴 수 있습니다. ## 다음 단계 - **예제 시도하기**: 기본 협업 예제부터 시작하세요 - **역할 실험하기**: 다양한 에이전트 역할 조합을 테스트해 보세요 - **상호작용 모니터링**: 협업 과정을 직접 보려면 `verbose=True`를 사용하세요 - **작업 설명 최적화**: 명확한 작업이 더 나은 협업으로 이어집니다 - **확장하기**: 복잡한 프로젝트에는 계층적 프로세스를 시도해 보세요 협업은 개별 AI 에이전트를 복잡하고 다면적인 문제를 함께 해결할 수 있는 강력한 팀으로 변화시킵니다.