"""Generic agent.""" from typing import List from pydantic import BaseModel, Field from langchain.tools import Tool from langchain.agents import AgentExecutor from langchain.chat_models import ChatOpenAI as OpenAI from langchain.tools.render import render_text_description from langchain.agents.format_scratchpad import format_log_to_str from langchain.agents.output_parsers import ReActSingleInputOutputParser, PydanticOutputParser from .prompts import Prompts from .agent.agent_vote import AgentVote class Agent(BaseModel): """Generic agent implementation.""" role: str = Field(description="Role of the agent") goal: str = Field(description="Objective of the agent") backstory: str = Field(description="Backstory of the agent") tools: List[Tool] = Field( description="Tools at agents disposal", default=[] ) prompts: Prompts = Field( description="Prompts class for the agent.", default=Prompts ) llm: str = Field( description="LLM of the agent", default=OpenAI( temperature=0.7, model="gpt-4", verbose=True ) ) def vote_agent_for_task(self, task: str) -> AgentVote: """ Execute a task with the agent. Parameters: task (str): Task to execute Returns: output (AgentVote): The agent voted to execute the task """ parser = PydanticOutputParser(pydantic_object=AgentVote) prompt = Prompts.AGENT_EXECUTION_PROMPT.partial( tools=render_text_description(self.tools), tool_names=self.__tools_names(), backstory=self.backstory, role=self.role, goal=self.goal, format_instructions=parser.get_format_instructions() ) return self.__function_calling(task, prompt, parser) def execute_task(self, task: str) -> str: """ Execute a task with the agent. Parameters: task (str): Task to execute Returns: output (str): Output of the agent """ prompt = Prompts.AGENT_EXECUTION_PROMPT.partial( tools=render_text_description(self.tools), tool_names=self.__tools_names(), backstory=self.backstory, role=self.role, goal=self.goal, ) return self.__execute_task(task, prompt) def __function_calling(self, input: str, prompt: str, parser: str) -> str: inner_agent = { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps']) } | prompt | parser return self.__execute(inner_agent, input) def __execute_task(self, input: str, prompt: str) -> str: chat_with_bind = self.llm.bind(stop=["\nObservation"]) inner_agent = { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps']) } | prompt | chat_with_bind | ReActSingleInputOutputParser() return self.__execute(inner_agent, input) def __execute(self, inner_agent, input): agent_executor = AgentExecutor( agent=inner_agent, tools=self.tools, verbose=True, handle_parsing_errors=True ) return agent_executor.invoke({"input": input})['output'] def __tools_names(self) -> str: return ", ".join([t.name for t in self.tools])