from pathlib import Path from typing import Dict, Iterator, List, Optional, Union from urllib.parse import urlparse from pydantic import Field, field_validator from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource from crewai.utilities.constants import KNOWLEDGE_DIRECTORY from crewai.utilities.logger import Logger class ExcelKnowledgeSource(BaseKnowledgeSource): """A knowledge source that stores and queries Excel file content using embeddings.""" # override content to be a dict of file paths to sheet names to csv content _logger: Logger = Logger(verbose=True) file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field( default=None, description="[Deprecated] The path to the file. Use file_paths instead.", ) file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field( default_factory=list, description="The path to the file" ) chunks: List[str] = Field(default_factory=list) content: Dict[Path, Dict[str, str]] = Field(default_factory=dict) safe_file_paths: List[Path] = Field(default_factory=list) @field_validator("file_path", "file_paths", mode="before") def validate_file_path(cls, v, info): """Validate that at least one of file_path or file_paths is provided.""" # Single check if both are None, O(1) instead of nested conditions if ( v is None and info.data.get( "file_path" if info.field_name == "file_paths" else "file_paths" ) is None ): raise ValueError("Either file_path or file_paths must be provided") return v def _process_file_paths(self) -> List[Path]: """Convert file_path to a list of Path objects.""" if hasattr(self, "file_path") and self.file_path is not None: self._logger.log( "warning", "The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.", color="yellow", ) self.file_paths = self.file_path if self.file_paths is None: raise ValueError("Your source must be provided with a file_paths: []") # Convert single path to list path_list: List[Union[Path, str]] = ( [self.file_paths] if isinstance(self.file_paths, (str, Path)) else list(self.file_paths) if isinstance(self.file_paths, list) else [] ) if not path_list: raise ValueError( "file_path/file_paths must be a Path, str, or a list of these types" ) return [self.convert_to_path(path) for path in path_list] def validate_content(self): """Validate the paths.""" for path in self.safe_file_paths: if not path.exists(): self._logger.log( "error", f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.", color="red", ) raise FileNotFoundError(f"File not found: {path}") if not path.is_file(): self._logger.log( "error", f"Path is not a file: {path}", color="red", ) def model_post_init(self, _) -> None: if self.file_path: self._logger.log( "warning", "The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.", color="yellow", ) self.file_paths = self.file_path self.safe_file_paths = self._process_file_paths() self.validate_content() self.content = self._load_content() def _load_content(self) -> Dict[Path, Dict[str, str]]: """Load and preprocess Excel file content from multiple sheets. Each sheet's content is converted to CSV format and stored. Returns: Dict[Path, Dict[str, str]]: A mapping of file paths to their respective sheet contents. Raises: ImportError: If required dependencies are missing. FileNotFoundError: If the specified Excel file cannot be opened. """ pd = self._import_dependencies() content_dict = {} for file_path in self.safe_file_paths: file_path = self.convert_to_path(file_path) with pd.ExcelFile(file_path) as xl: sheet_dict = { str(sheet_name): str( pd.read_excel(xl, sheet_name).to_csv(index=False) ) for sheet_name in xl.sheet_names } content_dict[file_path] = sheet_dict return content_dict def convert_to_path(self, path: Union[Path, str]) -> Path: """Convert a path to a Path object.""" return Path(KNOWLEDGE_DIRECTORY + "/" + path) if isinstance(path, str) else path def _import_dependencies(self): """Dynamically import dependencies.""" try: import pandas as pd return pd except ImportError as e: missing_package = str(e).split()[-1] raise ImportError( f"{missing_package} is not installed. Please install it with: pip install {missing_package}" ) def add(self) -> None: """ Add Excel file content to the knowledge source, chunk it, compute embeddings, and save the embeddings. """ # Convert dictionary values to a single string if content is a dictionary # Updated to account for .xlsx workbooks with multiple tabs/sheets content_str = "" for value in self.content.values(): if isinstance(value, dict): for sheet_value in value.values(): content_str += str(sheet_value) + "\n" else: content_str += str(value) + "\n" new_chunks = self._chunk_text(content_str) self.chunks.extend(new_chunks) self._save_documents() def _chunk_text(self, text: str) -> List[str]: """Utility method to split text into chunks.""" return [ text[i : i + self.chunk_size] for i in range(0, len(text), self.chunk_size - self.chunk_overlap) ]