from typing import Optional from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory class ContextualMemory: def __init__(self, stm: ShortTermMemory, ltm: LongTermMemory, em: EntityMemory): self.stm = stm self.ltm = ltm self.em = em def build_context_for_task(self, task, context) -> str: """ Automatically builds a minimal, highly relevant set of contextual information for a given task. """ query = f"{task.description} {context}".strip() if query == "": return "" context = [] context.append(self._fetch_ltm_context(task.description)) context.append(self._fetch_stm_context(query)) context.append(self._fetch_entity_context(query)) return "\n".join(filter(None, context)) def _fetch_stm_context(self, query) -> str: """ Fetches recent relevant insights from STM related to the task's description and expected_output, formatted as bullet points. """ stm_results = self.stm.search(query) formatted_results = "\n".join([f"- {result}" for result in stm_results]) return f"Recent Insights:\n{formatted_results}" if stm_results else "" def _fetch_ltm_context(self, task) -> Optional[str]: """ Fetches historical data or insights from LTM that are relevant to the task's description and expected_output, formatted as bullet points. """ ltm_results = self.ltm.search(task, latest_n=2) if not ltm_results: return None formatted_results = [ suggestion for result in ltm_results for suggestion in result["metadata"]["suggestions"] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice" ] formatted_results = list(dict.fromkeys(formatted_results)) formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]") return f"Historical Data:\n{formatted_results}" if ltm_results else "" def _fetch_entity_context(self, query) -> str: """ Fetches relevant entity information from Entity Memory related to the task's description and expected_output, formatted as bullet points. """ em_results = self.em.search(query) formatted_results = "\n".join( [f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice" ) return f"Entities:\n{formatted_results}" if em_results else ""