import logging import os from typing import Any, Final from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS from crewai.llm import LLM from crewai.llms.base_llm import BaseLLM logger = logging.getLogger(__name__) def create_llm( llm_value: str | LLM | Any | None = None, ) -> LLM | BaseLLM | None: """Creates or returns an LLM instance based on the given llm_value. Args: llm_value: LLM instance, model name string, None, or an object with LLM attributes. Returns: A BaseLLM instance if successful, or None if something fails. """ if isinstance(llm_value, (LLM, BaseLLM)): return llm_value if isinstance(llm_value, str): try: return LLM(model=llm_value) except Exception as e: logger.debug(f"Failed to instantiate LLM with model='{llm_value}': {e}") return None if llm_value is None: return _llm_via_environment_or_fallback() try: model = ( getattr(llm_value, "model", None) or getattr(llm_value, "model_name", None) or getattr(llm_value, "deployment_name", None) or str(llm_value) ) temperature: float | None = getattr(llm_value, "temperature", None) max_tokens: int | None = getattr(llm_value, "max_tokens", None) logprobs: int | None = getattr(llm_value, "logprobs", None) timeout: float | None = getattr(llm_value, "timeout", None) api_key: str | None = getattr(llm_value, "api_key", None) base_url: str | None = getattr(llm_value, "base_url", None) api_base: str | None = getattr(llm_value, "api_base", None) return LLM( model=model, temperature=temperature, max_tokens=max_tokens, logprobs=logprobs, timeout=timeout, api_key=api_key, base_url=base_url, api_base=api_base, ) except Exception as e: logger.debug(f"Error instantiating LLM from unknown object type: {e}") return None UNACCEPTED_ATTRIBUTES: Final[list[str]] = [ "AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "AWS_REGION_NAME", ] def _llm_via_environment_or_fallback() -> LLM | None: """Creates an LLM instance based on environment variables or defaults. Returns: A BaseLLM instance if successful, or None if something fails. """ model_name = ( os.environ.get("MODEL") or os.environ.get("MODEL_NAME") or os.environ.get("OPENAI_MODEL_NAME") or DEFAULT_LLM_MODEL ) model: str = model_name temperature: float | None = None max_tokens: int | None = None max_completion_tokens: int | None = None logprobs: int | None = None timeout: float | None = None api_key: str | None = None api_version: str | None = None presence_penalty: float | None = None frequency_penalty: float | None = None top_p: float | None = None n: int | None = None stop: str | list[str] | None = None logit_bias: dict[int, float] | None = None response_format: dict[str, Any] | None = None seed: int | None = None top_logprobs: int | None = None callbacks: list[Any] = [] base_url = ( os.environ.get("BASE_URL") or os.environ.get("OPENAI_API_BASE") or os.environ.get("OPENAI_BASE_URL") ) api_base = os.environ.get("API_BASE") or os.environ.get("AZURE_API_BASE") # Synchronize base_url and api_base if one is populated and the other is not if base_url and not api_base: api_base = base_url elif api_base and not base_url: base_url = api_base llm_params: dict[str, Any] = { "model": model, "temperature": temperature, "max_tokens": max_tokens, "max_completion_tokens": max_completion_tokens, "logprobs": logprobs, "timeout": timeout, "api_key": api_key, "base_url": base_url, "api_base": api_base, "api_version": api_version, "presence_penalty": presence_penalty, "frequency_penalty": frequency_penalty, "top_p": top_p, "n": n, "stop": stop, "logit_bias": logit_bias, "response_format": response_format, "seed": seed, "top_logprobs": top_logprobs, "callbacks": callbacks, } set_provider = model_name.partition("/")[0] if "/" in model_name else "openai" if set_provider in ENV_VARS: env_vars_for_provider = ENV_VARS[set_provider] if isinstance(env_vars_for_provider, (list, tuple)): for env_var in env_vars_for_provider: key_name = env_var.get("key_name") if key_name and key_name not in UNACCEPTED_ATTRIBUTES: env_value = os.environ.get(key_name) if env_value: # Map environment variable names to recognized parameters param_key = _normalize_key_name(key_name.lower()) llm_params[param_key] = env_value elif isinstance(env_var, dict): if env_var.get("default", False): for key, value in env_var.items(): if key not in ["prompt", "key_name", "default"]: llm_params[key.lower()] = value else: logger.debug( f"Expected env_var to be a dictionary, but got {type(env_var)}" ) llm_params = {k: v for k, v in llm_params.items() if v is not None} try: return LLM(**llm_params) except Exception as e: logger.debug( f"Error instantiating LLM from environment/fallback: {type(e).__name__}: {e}" ) return None def _normalize_key_name(key_name: str) -> str: """Maps environment variable names to recognized litellm parameter keys. Args: key_name: The environment variable name to normalize. """ for pattern in LITELLM_PARAMS: if pattern in key_name: return pattern return key_name