--- title: LLM Call Hooks description: Learn how to use LLM call hooks to intercept, modify, and control language model interactions in CrewAI mode: "wide" --- LLM Call Hooks provide fine-grained control over language model interactions during agent execution. These hooks allow you to intercept LLM calls, modify prompts, transform responses, implement approval gates, and add custom logging or monitoring. ## Overview LLM hooks are executed at two critical points: - **Before LLM Call**: Modify messages, validate inputs, or block execution - **After LLM Call**: Transform responses, sanitize outputs, or modify conversation history ## Hook Types ### Before LLM Call Hooks Executed before every LLM call, these hooks can: - Inspect and modify messages sent to the LLM - Block LLM execution based on conditions - Implement rate limiting or approval gates - Add context or system messages - Log request details **Signature:** ```python def before_hook(context: LLMCallHookContext) -> bool | None: # Return False to block execution # Return True or None to allow execution ... ``` ### After LLM Call Hooks Executed after every LLM call, these hooks can: - Modify or sanitize LLM responses - Add metadata or formatting - Log response details - Update conversation history - Implement content filtering **Signature:** ```python def after_hook(context: LLMCallHookContext) -> str | None: # Return modified response string # Return None to keep original response ... ``` ## LLM Hook Context The `LLMCallHookContext` object provides comprehensive access to execution state: ```python class LLMCallHookContext: executor: CrewAgentExecutor # Full executor reference messages: list # Mutable message list agent: Agent # Current agent task: Task # Current task crew: Crew # Crew instance llm: BaseLLM # LLM instance iterations: int # Current iteration count response: str | None # LLM response (after hooks only) ``` ### Modifying Messages **Important:** Always modify messages in-place: ```python # ✅ Correct - modify in-place def add_context(context: LLMCallHookContext) -> None: context.messages.append({"role": "system", "content": "Be concise"}) # ❌ Wrong - replaces list reference def wrong_approach(context: LLMCallHookContext) -> None: context.messages = [{"role": "system", "content": "Be concise"}] ``` ## Registration Methods ### 1. Global Hook Registration Register hooks that apply to all LLM calls across all crews: ```python from crewai.hooks import register_before_llm_call_hook, register_after_llm_call_hook def log_llm_call(context): print(f"LLM call by {context.agent.role} at iteration {context.iterations}") return None # Allow execution register_before_llm_call_hook(log_llm_call) ``` ### 2. Decorator-Based Registration Use decorators for cleaner syntax: ```python from crewai.hooks import before_llm_call, after_llm_call @before_llm_call def validate_iteration_count(context): if context.iterations > 10: print("⚠️ Exceeded maximum iterations") return False # Block execution return None @after_llm_call def sanitize_response(context): if context.response and "API_KEY" in context.response: return context.response.replace("API_KEY", "[REDACTED]") return None ``` ### 3. Crew-Scoped Hooks Register hooks for a specific crew instance: ```python @CrewBase class MyProjCrew: @before_llm_call_crew def validate_inputs(self, context): # Only applies to this crew if context.iterations == 0: print(f"Starting task: {context.task.description}") return None @after_llm_call_crew def log_responses(self, context): # Crew-specific response logging print(f"Response length: {len(context.response)}") return None @crew def crew(self) -> Crew: return Crew( agents=self.agents, tasks=self.tasks, process=Process.sequential, verbose=True ) ``` ## Common Use Cases ### 1. Iteration Limiting ```python @before_llm_call def limit_iterations(context: LLMCallHookContext) -> bool | None: max_iterations = 15 if context.iterations > max_iterations: print(f"⛔ Blocked: Exceeded {max_iterations} iterations") return False # Block execution return None ``` ### 2. Human Approval Gate ```python @before_llm_call def require_approval(context: LLMCallHookContext) -> bool | None: if context.iterations > 5: response = context.request_human_input( prompt=f"Iteration {context.iterations}: Approve LLM call?", default_message="Press Enter to approve, or type 'no' to block:" ) if response.lower() == "no": print("🚫 LLM call blocked by user") return False return None ``` ### 3. Adding System Context ```python @before_llm_call def add_guardrails(context: LLMCallHookContext) -> None: # Add safety guidelines to every LLM call context.messages.append({ "role": "system", "content": "Ensure responses are factual and cite sources when possible." }) return None ``` ### 4. Response Sanitization ```python @after_llm_call def sanitize_sensitive_data(context: LLMCallHookContext) -> str | None: if not context.response: return None # Remove sensitive patterns import re sanitized = context.response sanitized = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[SSN-REDACTED]', sanitized) sanitized = re.sub(r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b', '[CARD-REDACTED]', sanitized) return sanitized ``` ### 5. Cost Tracking ```python import tiktoken @before_llm_call def track_token_usage(context: LLMCallHookContext) -> None: encoding = tiktoken.get_encoding("cl100k_base") total_tokens = sum( len(encoding.encode(msg.get("content", ""))) for msg in context.messages ) print(f"📊 Input tokens: ~{total_tokens}") return None @after_llm_call def track_response_tokens(context: LLMCallHookContext) -> None: if context.response: encoding = tiktoken.get_encoding("cl100k_base") tokens = len(encoding.encode(context.response)) print(f"📊 Response tokens: ~{tokens}") return None ``` ### 6. Debug Logging ```python @before_llm_call def debug_request(context: LLMCallHookContext) -> None: print(f""" 🔍 LLM Call Debug: - Agent: {context.agent.role} - Task: {context.task.description[:50]}... - Iteration: {context.iterations} - Message Count: {len(context.messages)} - Last Message: {context.messages[-1] if context.messages else 'None'} """) return None @after_llm_call def debug_response(context: LLMCallHookContext) -> None: if context.response: print(f"✅ Response Preview: {context.response[:100]}...") return None ``` ## Hook Management ### Unregistering Hooks ```python from crewai.hooks import ( unregister_before_llm_call_hook, unregister_after_llm_call_hook ) # Unregister specific hook def my_hook(context): ... register_before_llm_call_hook(my_hook) # Later... unregister_before_llm_call_hook(my_hook) # Returns True if found ``` ### Clearing Hooks ```python from crewai.hooks import ( clear_before_llm_call_hooks, clear_after_llm_call_hooks, clear_all_llm_call_hooks ) # Clear specific hook type count = clear_before_llm_call_hooks() print(f"Cleared {count} before hooks") # Clear all LLM hooks before_count, after_count = clear_all_llm_call_hooks() print(f"Cleared {before_count} before and {after_count} after hooks") ``` ### Listing Registered Hooks ```python from crewai.hooks import ( get_before_llm_call_hooks, get_after_llm_call_hooks ) # Get current hooks before_hooks = get_before_llm_call_hooks() after_hooks = get_after_llm_call_hooks() print(f"Registered: {len(before_hooks)} before, {len(after_hooks)} after") ``` ## Advanced Patterns ### Conditional Hook Execution ```python @before_llm_call def conditional_blocking(context: LLMCallHookContext) -> bool | None: # Only block for specific agents if context.agent.role == "researcher" and context.iterations > 10: return False # Only block for specific tasks if "sensitive" in context.task.description.lower() and context.iterations > 5: return False return None ``` ### Context-Aware Modifications ```python @before_llm_call def adaptive_prompting(context: LLMCallHookContext) -> None: # Add different context based on iteration if context.iterations == 0: context.messages.append({ "role": "system", "content": "Start with a high-level overview." }) elif context.iterations > 3: context.messages.append({ "role": "system", "content": "Focus on specific details and provide examples." }) return None ``` ### Chaining Hooks ```python # Multiple hooks execute in registration order @before_llm_call def first_hook(context): print("1. First hook executed") return None @before_llm_call def second_hook(context): print("2. Second hook executed") return None @before_llm_call def blocking_hook(context): if context.iterations > 10: print("3. Blocking hook - execution stopped") return False # Subsequent hooks won't execute print("3. Blocking hook - execution allowed") return None ``` ## Best Practices 1. **Keep Hooks Focused**: Each hook should have a single responsibility 2. **Avoid Heavy Computation**: Hooks execute on every LLM call 3. **Handle Errors Gracefully**: Use try-except to prevent hook failures from breaking execution 4. **Use Type Hints**: Leverage `LLMCallHookContext` for better IDE support 5. **Document Hook Behavior**: Especially for blocking conditions 6. **Test Hooks Independently**: Unit test hooks before using in production 7. **Clear Hooks in Tests**: Use `clear_all_llm_call_hooks()` between test runs 8. **Modify In-Place**: Always modify `context.messages` in-place, never replace ## Error Handling ```python @before_llm_call def safe_hook(context: LLMCallHookContext) -> bool | None: try: # Your hook logic if some_condition: return False except Exception as e: print(f"⚠️ Hook error: {e}") # Decide: allow or block on error return None # Allow execution despite error ``` ## Type Safety ```python from crewai.hooks import LLMCallHookContext, BeforeLLMCallHookType, AfterLLMCallHookType # Explicit type annotations def my_before_hook(context: LLMCallHookContext) -> bool | None: return None def my_after_hook(context: LLMCallHookContext) -> str | None: return None # Type-safe registration register_before_llm_call_hook(my_before_hook) register_after_llm_call_hook(my_after_hook) ``` ## Troubleshooting ### Hook Not Executing - Verify hook is registered before crew execution - Check if previous hook returned `False` (blocks subsequent hooks) - Ensure hook signature matches expected type ### Message Modifications Not Persisting - Use in-place modifications: `context.messages.append()` - Don't replace the list: `context.messages = []` ### Response Modifications Not Working - Return the modified string from after hooks - Returning `None` keeps the original response ## Conclusion LLM Call Hooks provide powerful capabilities for controlling and monitoring language model interactions in CrewAI. Use them to implement safety guardrails, approval gates, logging, cost tracking, and response sanitization. Combined with proper error handling and type safety, hooks enable robust and production-ready agent systems.