from typing import Any, Dict, List, Optional, Union import pytest from crewai.llm import LLM from crewai.utilities.llm_utils import create_llm class CustomLLM(LLM): """Custom LLM implementation for testing. This is a simple implementation of the LLM abstract base class that returns a predefined response for testing purposes. """ def __init__(self, response: str = "Custom LLM response"): """Initialize the CustomLLM with a predefined response. Args: response: The predefined response to return from call(). """ super().__init__() self.response = response self.calls = [] self.stop = [] def call( self, messages: Union[str, List[Dict[str, str]]], tools: Optional[List[dict]] = None, callbacks: Optional[List[Any]] = None, available_functions: Optional[Dict[str, Any]] = None, ) -> Union[str, Any]: """Record the call and return the predefined response. Args: messages: Input messages for the LLM. tools: Optional list of tool schemas for function calling. callbacks: Optional list of callback functions. available_functions: Optional dict mapping function names to callables. Returns: The predefined response string. """ self.calls.append({ "messages": messages, "tools": tools, "callbacks": callbacks, "available_functions": available_functions }) return self.response def supports_function_calling(self) -> bool: """Return True to indicate that function calling is supported. Returns: True, indicating that this LLM supports function calling. """ return True def supports_stop_words(self) -> bool: """Return True to indicate that stop words are supported. Returns: True, indicating that this LLM supports stop words. """ return True def get_context_window_size(self) -> int: """Return a default context window size. Returns: 8192, a typical context window size for modern LLMs. """ return 8192 def test_custom_llm_implementation(): """Test that a custom LLM implementation works with create_llm.""" custom_llm = CustomLLM(response="The answer is 42") # Test that create_llm returns the custom LLM instance directly result_llm = create_llm(custom_llm) assert result_llm is custom_llm # Test calling the custom LLM response = result_llm.call("What is the answer to life, the universe, and everything?") # Verify that the custom LLM was called assert len(custom_llm.calls) > 0 # Verify that the response from the custom LLM was used assert response == "The answer is 42" class JWTAuthLLM(LLM): """Custom LLM implementation with JWT authentication.""" def __init__(self, jwt_token: str): super().__init__() if not jwt_token or not isinstance(jwt_token, str): raise ValueError("Invalid JWT token") self.jwt_token = jwt_token self.calls = [] self.stop = [] def call( self, messages: Union[str, List[Dict[str, str]]], tools: Optional[List[dict]] = None, callbacks: Optional[List[Any]] = None, available_functions: Optional[Dict[str, Any]] = None, ) -> Union[str, Any]: """Record the call and return a predefined response.""" self.calls.append({ "messages": messages, "tools": tools, "callbacks": callbacks, "available_functions": available_functions }) # In a real implementation, this would use the JWT token to authenticate # with an external service return "Response from JWT-authenticated LLM" def supports_function_calling(self) -> bool: """Return True to indicate that function calling is supported.""" return True def supports_stop_words(self) -> bool: """Return True to indicate that stop words are supported.""" return True def get_context_window_size(self) -> int: """Return a default context window size.""" return 8192 def test_custom_llm_with_jwt_auth(): """Test a custom LLM implementation with JWT authentication.""" jwt_llm = JWTAuthLLM(jwt_token="example.jwt.token") # Test that create_llm returns the JWT-authenticated LLM instance directly result_llm = create_llm(jwt_llm) assert result_llm is jwt_llm # Test calling the JWT-authenticated LLM response = result_llm.call("Test message") # Verify that the JWT-authenticated LLM was called assert len(jwt_llm.calls) > 0 # Verify that the response from the JWT-authenticated LLM was used assert response == "Response from JWT-authenticated LLM" def test_jwt_auth_llm_validation(): """Test that JWT token validation works correctly.""" # Test with invalid JWT token (empty string) with pytest.raises(ValueError, match="Invalid JWT token"): JWTAuthLLM(jwt_token="") # Test with invalid JWT token (non-string) with pytest.raises(ValueError, match="Invalid JWT token"): JWTAuthLLM(jwt_token=None) class TimeoutHandlingLLM(LLM): """Custom LLM implementation with timeout handling and retry logic.""" def __init__(self, max_retries: int = 3, timeout: int = 30): """Initialize the TimeoutHandlingLLM with retry and timeout settings. Args: max_retries: Maximum number of retry attempts. timeout: Timeout in seconds for each API call. """ super().__init__() self.max_retries = max_retries self.timeout = timeout self.calls = [] self.stop = [] self.fail_count = 0 # Number of times to simulate failure def call( self, messages: Union[str, List[Dict[str, str]]], tools: Optional[List[dict]] = None, callbacks: Optional[List[Any]] = None, available_functions: Optional[Dict[str, Any]] = None, ) -> Union[str, Any]: """Simulate API calls with timeout handling and retry logic. Args: messages: Input messages for the LLM. tools: Optional list of tool schemas for function calling. callbacks: Optional list of callback functions. available_functions: Optional dict mapping function names to callables. Returns: A response string based on whether this is the first attempt or a retry. Raises: TimeoutError: If all retry attempts fail. """ # Record the initial call self.calls.append({ "messages": messages, "tools": tools, "callbacks": callbacks, "available_functions": available_functions, "attempt": 0 }) # Simulate retry logic for attempt in range(self.max_retries): # Skip the first attempt recording since we already did that above if attempt == 0: # Simulate a failure if fail_count > 0 if self.fail_count > 0: self.fail_count -= 1 # If we've used all retries, raise an error if attempt == self.max_retries - 1: raise TimeoutError(f"LLM request failed after {self.max_retries} attempts") # Otherwise, continue to the next attempt (simulating backoff) continue else: # Success on first attempt return "First attempt response" else: # This is a retry attempt (attempt > 0) # Always record retry attempts self.calls.append({ "retry_attempt": attempt, "messages": messages, "tools": tools, "callbacks": callbacks, "available_functions": available_functions }) # Simulate a failure if fail_count > 0 if self.fail_count > 0: self.fail_count -= 1 # If we've used all retries, raise an error if attempt == self.max_retries - 1: raise TimeoutError(f"LLM request failed after {self.max_retries} attempts") # Otherwise, continue to the next attempt (simulating backoff) continue else: # Success on retry return "Response after retry" def supports_function_calling(self) -> bool: """Return True to indicate that function calling is supported. Returns: True, indicating that this LLM supports function calling. """ return True def supports_stop_words(self) -> bool: """Return True to indicate that stop words are supported. Returns: True, indicating that this LLM supports stop words. """ return True def get_context_window_size(self) -> int: """Return a default context window size. Returns: 8192, a typical context window size for modern LLMs. """ return 8192 def test_timeout_handling_llm(): """Test a custom LLM implementation with timeout handling and retry logic.""" # Test successful first attempt llm = TimeoutHandlingLLM() response = llm.call("Test message") assert response == "First attempt response" assert len(llm.calls) == 1 # Test successful retry llm = TimeoutHandlingLLM() llm.fail_count = 1 # Fail once, then succeed response = llm.call("Test message") assert response == "Response after retry" assert len(llm.calls) == 2 # Initial call + successful retry call # Test failure after all retries llm = TimeoutHandlingLLM(max_retries=2) llm.fail_count = 2 # Fail twice, which is all retries with pytest.raises(TimeoutError, match="LLM request failed after 2 attempts"): llm.call("Test message") assert len(llm.calls) == 2 # Initial call + failed retry attempt