Compare commits

..

3 Commits

Author SHA1 Message Date
Brandon Hancock
b0d1161699 Merge branch 'main' into feature/add-docs-for-crew-output 2024-07-15 16:15:44 -04:00
Brandon Hancock
c31c99337f Add reference to change log 2024-07-15 16:12:47 -04:00
Brandon Hancock
1ba66f06b8 Add docs for crewoutput and taskoutput 2024-07-15 15:10:57 -04:00
361 changed files with 1349739 additions and 91355 deletions

View File

@@ -1,116 +0,0 @@
name: Bug report
description: Create a report to help us improve CrewAI
title: "[BUG]"
labels: ["bug"]
assignees: []
body:
- type: textarea
id: description
attributes:
label: Description
description: Provide a clear and concise description of what the bug is.
validations:
required: true
- type: textarea
id: steps-to-reproduce
attributes:
label: Steps to Reproduce
description: Provide a step-by-step process to reproduce the behavior.
placeholder: |
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
validations:
required: true
- type: textarea
id: expected-behavior
attributes:
label: Expected behavior
description: A clear and concise description of what you expected to happen.
validations:
required: true
- type: textarea
id: screenshots-code
attributes:
label: Screenshots/Code snippets
description: If applicable, add screenshots or code snippets to help explain your problem.
validations:
required: true
- type: dropdown
id: os
attributes:
label: Operating System
description: Select the operating system you're using
options:
- Ubuntu 20.04
- Ubuntu 22.04
- Ubuntu 24.04
- macOS Catalina
- macOS Big Sur
- macOS Monterey
- macOS Ventura
- macOS Sonoma
- Windows 10
- Windows 11
- Other (specify in additional context)
validations:
required: true
- type: dropdown
id: python-version
attributes:
label: Python Version
description: Version of Python your Crew is running on
options:
- '3.10'
- '3.11'
- '3.12'
- '3.13'
validations:
required: true
- type: input
id: crewai-version
attributes:
label: crewAI Version
description: What version of CrewAI are you using
validations:
required: true
- type: input
id: crewai-tools-version
attributes:
label: crewAI Tools Version
description: What version of CrewAI Tools are you using
validations:
required: true
- type: dropdown
id: virtual-environment
attributes:
label: Virtual Environment
description: What Virtual Environment are you running your crew in.
options:
- Venv
- Conda
- Poetry
validations:
required: true
- type: textarea
id: evidence
attributes:
label: Evidence
description: Include relevant information, logs or error messages. These can be screenshots.
validations:
required: true
- type: textarea
id: possible-solution
attributes:
label: Possible Solution
description: Have a solution in mind? Please suggest it here, or write "None".
validations:
required: true
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Add any other context about the problem here.
validations:
required: true

View File

@@ -1 +0,0 @@
blank_issues_enabled: false

View File

@@ -1,65 +0,0 @@
name: Feature request
description: Suggest a new feature for CrewAI
title: "[FEATURE]"
labels: ["feature-request"]
assignees: []
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this feature request!
- type: dropdown
id: feature-area
attributes:
label: Feature Area
description: Which area of CrewAI does this feature primarily relate to?
options:
- Core functionality
- Agent capabilities
- Task management
- Integration with external tools
- Performance optimization
- Documentation
- Other (please specify in additional context)
validations:
required: true
- type: textarea
id: problem
attributes:
label: Is your feature request related to a an existing bug? Please link it here.
description: A link to the bug or NA if not related to an existing bug.
validations:
required: true
- type: textarea
id: solution
attributes:
label: Describe the solution you'd like
description: A clear and concise description of what you want to happen.
validations:
required: true
- type: textarea
id: alternatives
attributes:
label: Describe alternatives you've considered
description: A clear and concise description of any alternative solutions or features you've considered.
validations:
required: false
- type: textarea
id: context
attributes:
label: Additional context
description: Add any other context, screenshots, or examples about the feature request here.
validations:
required: false
- type: dropdown
id: willingness-to-contribute
attributes:
label: Willingness to Contribute
description: Would you be willing to contribute to the implementation of this feature?
options:
- Yes, I'd be happy to submit a pull request
- I could provide more detailed specifications
- I can test the feature once it's implemented
- No, I'm just suggesting the idea
validations:
required: true

View File

@@ -1,8 +1,10 @@
name: Deploy MkDocs name: Deploy MkDocs
on: on:
release: workflow_dispatch:
types: [published] push:
branches:
- main
permissions: permissions:
contents: write contents: write

View File

@@ -1,23 +0,0 @@
name: Security Checker
on: [pull_request]
jobs:
security-check:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11.9"
- name: Install dependencies
run: pip install bandit
- name: Run Bandit
run: bandit -c pyproject.toml -r src/ -lll

View File

@@ -1,27 +0,0 @@
name: Mark stale issues and pull requests
on:
schedule:
- cron: '10 12 * * *'
workflow_dispatch:
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v9
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-label: 'no-issue-activity'
stale-issue-message: 'This issue is stale because it has been open for 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
days-before-issue-stale: 30
days-before-issue-close: 5
stale-pr-label: 'no-pr-activity'
stale-pr-message: 'This PR is stale because it has been open for 45 days with no activity.'
days-before-pr-stale: 45
days-before-pr-close: -1
operations-per-run: 1200

View File

@@ -11,7 +11,6 @@ env:
jobs: jobs:
deploy: deploy:
runs-on: ubuntu-latest runs-on: ubuntu-latest
timeout-minutes: 15
steps: steps:
- name: Checkout code - name: Checkout code

3
.gitignore vendored
View File

@@ -2,7 +2,6 @@
.pytest_cache .pytest_cache
__pycache__ __pycache__
dist/ dist/
lib/
.env .env
assets/* assets/*
.idea .idea
@@ -16,4 +15,4 @@ rc-tests/*
*.pkl *.pkl
temp/* temp/*
.vscode/* .vscode/*
crew_tasks_output.json crew_tasks_output.json

View File

@@ -8,11 +8,11 @@
<h3> <h3>
[Homepage](https://www.crewai.com/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/crewAIInc/crewAI-examples) | [Discourse](https://community.crewai.com) [Homepage](https://www.crewai.io/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/joaomdmoura/crewai-examples) | [Discord](https://discord.com/invite/X4JWnZnxPb)
</h3> </h3>
[![GitHub Repo stars](https://img.shields.io/github/stars/joaomdmoura/crewAI)](https://github.com/crewAIInc/crewAI) [![GitHub Repo stars](https://img.shields.io/github/stars/joaomdmoura/crewAI)](https://github.com/joaomdmoura/crewAI)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
</div> </div>
@@ -64,8 +64,24 @@ from crewai_tools import SerperDevTool
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
# You can choose to use a local model through Ollama for example. See https://docs.crewai.com/how-to/LLM-Connections/ for more information.
# os.environ["OPENAI_API_BASE"] = 'http://localhost:11434/v1'
# os.environ["OPENAI_MODEL_NAME"] ='openhermes' # Adjust based on available model
# os.environ["OPENAI_API_KEY"] ='sk-111111111111111111111111111111111111111111111111'
# You can pass an optional llm attribute specifying what model you wanna use.
# It can be a local model through Ollama / LM Studio or a remote # It can be a local model through Ollama / LM Studio or a remote
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/) # model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
#
# import os
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
#
# OR
#
# from langchain_openai import ChatOpenAI
search_tool = SerperDevTool()
# Define your agents with roles and goals # Define your agents with roles and goals
researcher = Agent( researcher = Agent(
@@ -78,7 +94,7 @@ researcher = Agent(
allow_delegation=False, allow_delegation=False,
# You can pass an optional llm attribute specifying what model you wanna use. # You can pass an optional llm attribute specifying what model you wanna use.
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7), # llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
tools=[SerperDevTool()] tools=[search_tool]
) )
writer = Agent( writer = Agent(
role='Tech Content Strategist', role='Tech Content Strategist',
@@ -110,7 +126,7 @@ task2 = Task(
crew = Crew( crew = Crew(
agents=[researcher, writer], agents=[researcher, writer],
tasks=[task1, task2], tasks=[task1, task2],
verbose=True, verbose=2, # You can set it to 1 or 2 to different logging levels
process = Process.sequential process = Process.sequential
) )
@@ -137,12 +153,12 @@ In addition to the sequential process, you can use the hierarchical process, whi
## Examples ## Examples
You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file): You can test different real life examples of AI crews in the [crewAI-examples repo](https://github.com/joaomdmoura/crewAI-examples?tab=readme-ov-file):
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator) - [Landing Page Generator](https://github.com/joaomdmoura/crewAI-examples/tree/main/landing_page_generator)
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution) - [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) - [Trip Planner](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) - [Stock Analysis](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis)
### Quick Tutorial ### Quick Tutorial
@@ -150,19 +166,19 @@ You can test different real life examples of AI crews in the [crewAI-examples re
### Write Job Descriptions ### Write Job Descriptions
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting) or watch a video below: [Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting) or watch a video below:
[![Jobs postings](https://img.youtube.com/vi/u98wEMz-9to/maxresdefault.jpg)](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings") [![Jobs postings](https://img.youtube.com/vi/u98wEMz-9to/maxresdefault.jpg)](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
### Trip Planner ### Trip Planner
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) or watch a video below: [Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner) or watch a video below:
[![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/maxresdefault.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner") [![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/maxresdefault.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
### Stock Analysis ### Stock Analysis
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) or watch a video below: [Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis) or watch a video below:
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis") [![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
@@ -174,12 +190,13 @@ Please refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-
## How CrewAI Compares ## How CrewAI Compares
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
- **Autogen**: While Autogen does good in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows. - **Autogen**: While Autogen does good in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications. - **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
## Contribution ## Contribution
CrewAI is open-source and we welcome contributions. If you're looking to contribute, please: CrewAI is open-source and we welcome contributions. If you're looking to contribute, please:
@@ -237,7 +254,7 @@ pip install dist/*.tar.gz
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools. CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. We don't offer a way to disable it now, but we will in the future. There is NO data being collected on the prompts, tasks descriptions agents backstories or goals nor tools usage, no API calls, nor responses nor any data that is being processed by the agents, nor any secrets and env vars.
Data collected includes: Data collected includes:
@@ -262,44 +279,8 @@ Data collected includes:
- Tools names available - Tools names available
- Understand out of the publically available tools, which ones are being used the most so we can improve them - Understand out of the publically available tools, which ones are being used the most so we can improve them
Users can opt-in to Further Telemetry, sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share. Users can opt-in sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews.
## License ## License
CrewAI is released under the MIT License. CrewAI is released under the MIT License.
## Frequently Asked Questions (FAQ)
### Q: What is CrewAI?
A: CrewAI is a cutting-edge framework for orchestrating role-playing, autonomous AI agents. It enables agents to work together seamlessly, tackling complex tasks through collaborative intelligence.
### Q: How do I install CrewAI?
A: You can install CrewAI using pip:
```shell
pip install crewai
```
For additional tools, use:
```shell
pip install 'crewai[tools]'
```
### Q: Can I use CrewAI with local models?
A: Yes, CrewAI supports various LLMs, including local models. You can configure your agents to use local models via tools like Ollama & LM Studio. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
### Q: What are the key features of CrewAI?
A: Key features include role-based agent design, autonomous inter-agent delegation, flexible task management, process-driven execution, output saving as files, and compatibility with both open-source and proprietary models.
### Q: How does CrewAI compare to other AI orchestration tools?
A: CrewAI is designed with production in mind, offering flexibility similar to Autogen's conversational agents and structured processes like ChatDev, but with more adaptability for real-world applications.
### Q: Is CrewAI open-source?
A: Yes, CrewAI is open-source and welcomes contributions from the community.
### Q: Does CrewAI collect any data?
A: CrewAI uses anonymous telemetry to collect usage data for improvement purposes. No sensitive data (like prompts, task descriptions, or API calls) is collected. Users can opt-in to share more detailed data by setting `share_crew=True` on their Crews.
### Q: Where can I find examples of CrewAI in action?
A: You can find various real-life examples in the [crewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
### Q: How can I contribute to CrewAI?
A: Contributions are welcome! You can fork the repository, create a new branch for your feature, add your improvement, and send a pull request. Check the Contribution section in the README for more details.

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 810 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 223 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 204 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 295 KiB

View File

@@ -11,33 +11,29 @@ description: What are crewAI Agents and how to use them.
<li class='leading-3'>Make decisions</li> <li class='leading-3'>Make decisions</li>
<li class='leading-3'>Communicate with other agents</li> <li class='leading-3'>Communicate with other agents</li>
</ul> </ul>
<br/> <br/>
Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like 'Researcher', 'Writer', or 'Customer Support', each contributing to the overall goal of the crew. Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like 'Researcher', 'Writer', or 'Customer Support', each contributing to the overall goal of the crew.
## Agent Attributes ## Agent Attributes
| Attribute | Parameter | Description | | Attribute | Parameter | Description |
| :------------------------- | :--------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | :------------------------- | :---- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Role** | `role` | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. | | **Role** | `role` | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
| **Goal** | `goal` | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. | | **Goal** | `goal` | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
| **Backstory** | `backstory`| Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. | | **Backstory** | `backstory` | Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
| **LLM** *(optional)* | `llm` | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. | | **LLM** *(optional)* | `llm` | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
| **Tools** *(optional)* | `tools` | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. | | **Tools** *(optional)* | `tools` | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
| **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. | | **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
| **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. | | **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. | | **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. | | **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the Maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. | | **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`. | **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. | | **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. | | **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. | | **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. | | **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. | | **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`.
| **Use System Prompt** *(optional)* | `use_system_prompt` | Adds the ability to not use system prompt (to support o1 models). Default is `True`. |
| **Respect Context Window** *(optional)* | `respect_context_window` | Summary strategy to avoid overflowing the context window. Default is `True`. |
## Creating an Agent ## Creating an Agent
@@ -65,7 +61,7 @@ agent = Agent(
max_rpm=None, # Optional max_rpm=None, # Optional
max_execution_time=None, # Optional max_execution_time=None, # Optional
verbose=True, # Optional verbose=True, # Optional
allow_delegation=False, # Optional allow_delegation=True, # Optional
step_callback=my_intermediate_step_callback, # Optional step_callback=my_intermediate_step_callback, # Optional
cache=True, # Optional cache=True, # Optional
system_template=my_system_template, # Optional system_template=my_system_template, # Optional
@@ -76,10 +72,7 @@ agent = Agent(
tools_handler=my_tools_handler, # Optional tools_handler=my_tools_handler, # Optional
cache_handler=my_cache_handler, # Optional cache_handler=my_cache_handler, # Optional
callbacks=[callback1, callback2], # Optional callbacks=[callback1, callback2], # Optional
allow_code_execution=True, # Optional agent_executor=my_agent_executor # Optional
max_retry_limit=2, # Optional
use_system_prompt=True, # Optional
respect_context_window=True, # Optional
) )
``` ```
@@ -109,7 +102,7 @@ agent = Agent(
BaseAgent includes attributes and methods required to integrate with your crews to run and delegate tasks to other agents within your own crew. BaseAgent includes attributes and methods required to integrate with your crews to run and delegate tasks to other agents within your own crew.
CrewAI is a universal multi-agent framework that allows for all agents to work together to automate tasks and solve problems. CrewAI is a universal multi agent framework that allows for all agents to work together to automate tasks and solve problems.
```py ```py
@@ -121,7 +114,7 @@ from langchain.agents import load_tools
langchain_tools = load_tools(["google-serper"], llm=llm) langchain_tools = load_tools(["google-serper"], llm=llm)
agent1 = CustomAgent( agent1 = CustomAgent(
role="agent role", role="backstory agent",
goal="who is {input}?", goal="who is {input}?",
backstory="agent backstory", backstory="agent backstory",
verbose=True, verbose=True,
@@ -134,7 +127,7 @@ task1 = Task(
) )
agent2 = Agent( agent2 = Agent(
role="agent role", role="bio agent",
goal="summarize the short bio for {input} and if needed do more research", goal="summarize the short bio for {input} and if needed do more research",
backstory="agent backstory", backstory="agent backstory",
verbose=True, verbose=True,
@@ -151,5 +144,6 @@ my_crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
crew = my_crew.kickoff(inputs={"input": "Mark Twain"}) crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
``` ```
## Conclusion ## Conclusion
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence. Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.

View File

@@ -1,142 +0,0 @@
# CrewAI CLI Documentation
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews and pipelines.
## Installation
To use the CrewAI CLI, make sure you have CrewAI & Poetry installed:
```
pip install crewai poetry
```
## Basic Usage
The basic structure of a CrewAI CLI command is:
```
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
```
## Available Commands
### 1. create
Create a new crew or pipeline.
```
crewai create [OPTIONS] TYPE NAME
```
- `TYPE`: Choose between "crew" or "pipeline"
- `NAME`: Name of the crew or pipeline
- `--router`: (Optional) Create a pipeline with router functionality
Example:
```
crewai create crew my_new_crew
crewai create pipeline my_new_pipeline --router
```
### 2. version
Show the installed version of CrewAI.
```
crewai version [OPTIONS]
```
- `--tools`: (Optional) Show the installed version of CrewAI tools
Example:
```
crewai version
crewai version --tools
```
### 3. train
Train the crew for a specified number of iterations.
```
crewai train [OPTIONS]
```
- `-n, --n_iterations INTEGER`: Number of iterations to train the crew (default: 5)
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
Example:
```
crewai train -n 10 -f my_training_data.pkl
```
### 4. replay
Replay the crew execution from a specific task.
```
crewai replay [OPTIONS]
```
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
Example:
```
crewai replay -t task_123456
```
### 5. log_tasks_outputs
Retrieve your latest crew.kickoff() task outputs.
```
crewai log_tasks_outputs
```
### 6. reset_memories
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
```
crewai reset_memories [OPTIONS]
```
- `-l, --long`: Reset LONG TERM memory
- `-s, --short`: Reset SHORT TERM memory
- `-e, --entities`: Reset ENTITIES memory
- `-k, --kickoff-outputs`: Reset LATEST KICKOFF TASK OUTPUTS
- `-a, --all`: Reset ALL memories
Example:
```
crewai reset_memories --long --short
crewai reset_memories --all
```
### 7. test
Test the crew and evaluate the results.
```
crewai test [OPTIONS]
```
- `-n, --n_iterations INTEGER`: Number of iterations to test the crew (default: 3)
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
Example:
```
crewai test -n 5 -m gpt-3.5-turbo
```
### 8. run
Run the crew.
```
crewai run
```
## Note
Make sure to run these commands from the directory where your CrewAI project is set up. Some commands may require additional configuration or setup within your project structure.

View File

@@ -27,9 +27,7 @@ The `Crew` class has been enriched with several attributes to support advanced f
- **Memory Usage (`memory`)**: Indicates whether the crew should use memory to store memories of its execution, enhancing task execution and agent learning. - **Memory Usage (`memory`)**: Indicates whether the crew should use memory to store memories of its execution, enhancing task execution and agent learning.
- **Embedder Configuration (`embedder`)**: Specifies the configuration for the embedder to be used by the crew for understanding and generating language. This attribute supports customization of the language model provider. - **Embedder Configuration (`embedder`)**: Specifies the configuration for the embedder to be used by the crew for understanding and generating language. This attribute supports customization of the language model provider.
- **Cache Management (`cache`)**: Determines whether the crew should use a cache to store the results of tool executions, optimizing performance. - **Cache Management (`cache`)**: Determines whether the crew should use a cache to store the results of tool executions, optimizing performance.
- **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew's execution. - **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew execution.
- **Planning Mode (`planning`)**: Allows crews to plan their actions before executing tasks by setting `planning=True` when creating the `Crew` instance. This feature enhances coordination and efficiency.
- **Replay Feature**: Introduces a new CLI for listing tasks from the last run and replaying from a specific task, enhancing task management and troubleshooting.
## Delegation: Dividing to Conquer ## Delegation: Dividing to Conquer
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability. Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.

View File

@@ -13,18 +13,18 @@ A crew in crewAI represents a collaborative group of agents working together to
| :------------------------------------ | :--------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | :------------------------------------ | :--------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Tasks** | `tasks` | A list of tasks assigned to the crew. | | **Tasks** | `tasks` | A list of tasks assigned to the crew. |
| **Agents** | `agents` | A list of agents that are part of the crew. | | **Agents** | `agents` | A list of agents that are part of the crew. |
| **Process** _(optional)_ | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. Default is `sequential`. | | **Process** _(optional)_ | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. |
| **Verbose** _(optional)_ | `verbose` | The verbosity level for logging during execution. Defaults to `False`. | | **Verbose** _(optional)_ | `verbose` | The verbosity level for logging during execution. |
| **Manager LLM** _(optional)_ | `manager_llm` | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** | | **Manager LLM** _(optional)_ | `manager_llm` | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. | | **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. | | **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. | | **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. |
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. | | **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. | | **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). Defaults to `False`. | | **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. | | **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. | | **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. | | **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. |
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. | | **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. | | **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. | | **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
@@ -32,12 +32,63 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. | | **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. | | **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. | | **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
!!! note "Crew Max RPM" !!! note "Crew Max RPM"
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it. The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
## Creating a Crew
When assembling a crew, you combine agents with complementary roles and tools, assign tasks, and select a process that dictates their execution order and interaction.
### Example: Assembling a Crew
```python
from crewai import Crew, Agent, Task, Process
from langchain_community.tools import DuckDuckGoSearchRun
# Define agents with specific roles and tools
researcher = Agent(
role='Senior Research Analyst',
goal='Discover innovative AI technologies',
backstory="""You're a senior research analyst at a large company.
You're responsible for analyzing data and providing insights
to the business.
You're currently working on a project to analyze the
trends and innovations in the space of artificial intelligence.""",
tools=[DuckDuckGoSearchRun()]
)
writer = Agent(
role='Content Writer',
goal='Write engaging articles on AI discoveries',
backstory="""You're a senior writer at a large company.
You're responsible for creating content to the business.
You're currently working on a project to write about trends
and innovations in the space of AI for your next meeting.""",
verbose=True
)
# Create tasks for the agents
research_task = Task(
description='Identify breakthrough AI technologies',
agent=researcher,
expected_output='A bullet list summary of the top 5 most important AI news'
)
write_article_task = Task(
description='Draft an article on the latest AI technologies',
agent=writer,
expected_output='3 paragraph blog post on the latest AI technologies'
)
# Assemble the crew with a sequential process
my_crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_article_task],
process=Process.sequential,
full_output=True,
verbose=True,
)
```
## Crew Output ## Crew Output
@@ -75,10 +126,10 @@ Once a crew has been executed, its output can be accessed through the `output` a
crew = Crew( crew = Crew(
agents=[research_agent, writer_agent], agents=[research_agent, writer_agent],
tasks=[research_task, write_article_task], tasks=[research_task, write_article_task],
verbose=True verbose=2
) )
crew_output = crew.kickoff() result = crew.kickoff()
# Accessing the crew output # Accessing the crew output
print(f"Raw Output: {crew_output.raw}") print(f"Raw Output: {crew_output.raw}")
@@ -124,14 +175,14 @@ result = my_crew.kickoff()
print(result) print(result)
``` ```
### Different Ways to Kick Off a Crew ### Different ways to Kicking Off a Crew
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`. Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
- `kickoff()`: Starts the execution process according to the defined process flow. `kickoff()`: Starts the execution process according to the defined process flow.
- `kickoff_for_each()`: Executes tasks for each agent individually. `kickoff_for_each()`: Executes tasks for each agent individually.
- `kickoff_async()`: Initiates the workflow asynchronously. `kickoff_async()`: Initiates the workflow asynchronously.
- `kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner. `kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
```python ```python
# Start the crew's task execution # Start the crew's task execution
@@ -156,31 +207,30 @@ for async_result in async_results:
print(async_result) print(async_result)
``` ```
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs. These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs
### Replaying from a Specific Task
You can now replay from a specific task using our CLI command `replay`. ### Replaying from specific task:
You can now replay from a specific task using our cli command replay.
The replay feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process. The replay_from_tasks feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from. Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from.
### Replaying from a Specific Task Using the CLI
### Replaying from specific task Using the CLI
To use the replay feature, follow these steps: To use the replay feature, follow these steps:
1. Open your terminal or command prompt. 1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located. 2. Navigate to the directory where your CrewAI project is located.
3. Run the following command: 3. Run the following command:
To view the latest kickoff task IDs, use: To view latest kickoff task_ids use:
```shell ```shell
crewai log-tasks-outputs crewai log-tasks-outputs
``` ```
Then, to replay from a specific task, use:
```shell ```shell
crewai replay -t <task_id> crewai replay -t <task_id>

View File

@@ -1,155 +0,0 @@
# Large Language Models (LLMs) in crewAI
## Introduction
Large Language Models (LLMs) are the backbone of intelligent agents in the crewAI framework. This guide will help you understand, configure, and optimize LLM usage for your crewAI projects.
## Table of Contents
- [Key Concepts](#key-concepts)
- [Configuring LLMs for Agents](#configuring-llms-for-agents)
- [1. Default Configuration](#1-default-configuration)
- [2. String Identifier](#2-string-identifier)
- [3. LLM Instance](#3-llm-instance)
- [4. Custom LLM Objects](#4-custom-llm-objects)
- [Connecting to OpenAI-Compatible LLMs](#connecting-to-openai-compatible-llms)
- [LLM Configuration Options](#llm-configuration-options)
- [Using Ollama (Local LLMs)](#using-ollama-local-llms)
- [Changing the Base API URL](#changing-the-base-api-url)
- [Best Practices](#best-practices)
- [Troubleshooting](#troubleshooting)
## Key Concepts
- **LLM**: Large Language Model, the AI powering agent intelligence
- **Agent**: A crewAI entity that uses an LLM to perform tasks
- **Provider**: A service that offers LLM capabilities (e.g., OpenAI, Anthropic, Ollama, [more providers](https://docs.litellm.ai/docs/providers))
## Configuring LLMs for Agents
crewAI offers flexible options for setting up LLMs:
### 1. Default Configuration
By default, crewAI uses the `gpt-4o-mini` model. It uses environment variables if no LLM is specified:
- `OPENAI_MODEL_NAME` (defaults to "gpt-4o-mini" if not set)
- `OPENAI_API_BASE`
- `OPENAI_API_KEY`
### 2. String Identifier
```python
agent = Agent(llm="gpt-4o", ...)
```
### 3. LLM Instance
List of [more providers](https://docs.litellm.ai/docs/providers).
```python
from crewai import LLM
llm = LLM(model="gpt-4", temperature=0.7)
agent = Agent(llm=llm, ...)
```
### 4. Custom LLM Objects
Pass a custom LLM implementation or object from another library.
## Connecting to OpenAI-Compatible LLMs
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
1. Using environment variables:
```python
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
```
2. Using LLM class attributes:
```python
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
```
## LLM Configuration Options
When configuring an LLM for your agent, you have access to a wide range of parameters:
| Parameter | Type | Description |
|-----------|------|-------------|
| `model` | str | The name of the model to use (e.g., "gpt-4", "gpt-3.5-turbo", "ollama/llama3.1", [more providers](https://docs.litellm.ai/docs/providers)) |
| `timeout` | float, int | Maximum time (in seconds) to wait for a response |
| `temperature` | float | Controls randomness in output (0.0 to 1.0) |
| `top_p` | float | Controls diversity of output (0.0 to 1.0) |
| `n` | int | Number of completions to generate |
| `stop` | str, List[str] | Sequence(s) to stop generation |
| `max_tokens` | int | Maximum number of tokens to generate |
| `presence_penalty` | float | Penalizes new tokens based on their presence in the text so far |
| `frequency_penalty` | float | Penalizes new tokens based on their frequency in the text so far |
| `logit_bias` | Dict[int, float] | Modifies likelihood of specified tokens appearing in the completion |
| `response_format` | Dict[str, Any] | Specifies the format of the response (e.g., {"type": "json_object"}) |
| `seed` | int | Sets a random seed for deterministic results |
| `logprobs` | bool | Whether to return log probabilities of the output tokens |
| `top_logprobs` | int | Number of most likely tokens to return the log probabilities for |
| `base_url` | str | The base URL for the API endpoint |
| `api_version` | str | The version of the API to use |
| `api_key` | str | Your API key for authentication |
Example:
```python
llm = LLM(
model="gpt-4",
temperature=0.8,
max_tokens=150,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42,
base_url="https://api.openai.com/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
## Using Ollama (Local LLMs)
crewAI supports using Ollama for running open-source models locally:
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
3. Configure agent:
```python
agent = Agent(
llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"),
...
)
```
## Changing the Base API URL
You can change the base API URL for any LLM provider by setting the `base_url` parameter:
```python
llm = LLM(
model="custom-model-name",
base_url="https://api.your-provider.com/v1",
api_key="your-api-key"
)
agent = Agent(llm=llm, ...)
```
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider.
## Best Practices
1. **Choose the right model**: Balance capability and cost.
2. **Optimize prompts**: Clear, concise instructions improve output.
3. **Manage tokens**: Monitor and limit token usage for efficiency.
4. **Use appropriate temperature**: Lower for factual tasks, higher for creative ones.
5. **Implement error handling**: Gracefully manage API errors and rate limits.
## Troubleshooting
- **API Errors**: Check your API key, network connection, and rate limits.
- **Unexpected Outputs**: Refine your prompts and adjust temperature or top_p.
- **Performance Issues**: Consider using a more powerful model or optimizing your queries.
- **Timeout Errors**: Increase the `timeout` parameter or optimize your input.

View File

@@ -4,17 +4,16 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
--- ---
## Introduction to Memory Systems in crewAI ## Introduction to Memory Systems in crewAI
!!! note "Enhancing Agent Intelligence" !!! note "Enhancing Agent Intelligence"
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents. This system comprises short-term memory, long-term memory, entity memory, and contextual memory, each serving a unique purpose in aiding agents to remember, reason, and learn from past interactions. The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents. This system comprises short-term memory, long-term memory, entity memory, and contextual memory, each serving a unique purpose in aiding agents to remember, reason, and learn from past interactions.
## Memory System Components ## Memory System Components
| Component | Description | | Component | Description |
| :------------------- | :---------------------------------------------------------------------------------------------------------------------- | | :------------------- | :----------------------------------------------------------- |
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes using `RAG`, enabling agents to recall and utilize information relevant to their current context during the current executions.| | **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context during the current executions. |
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. | | **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remember what they did right and wrong across multiple executions |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. | | **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. | | **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
## How Memory Systems Empower Agents ## How Memory Systems Empower Agents
@@ -28,12 +27,7 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
## Implementing Memory in Your Crew ## Implementing Memory in Your Crew
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform. When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI embeddings by default, but you can change it by setting `embedder` to a different model. It's also possible to initialize the memory instance with your own instance. By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using the EmbedChain package.
The **Long-Term Memory** uses SQLite3 to store task results. Currently, there is no way to override these storage implementations.
The data storage files are saved into a platform-specific location found using the appdirs package,
and the name of the project can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
### Example: Configuring Memory for a Crew ### Example: Configuring Memory for a Crew
@@ -50,45 +44,6 @@ my_crew = Crew(
) )
``` ```
### Example: Use Custom Memory Instances e.g FAISS as the VectorDB
```python
from crewai import Crew, Agent, Task, Process
# Assemble your crew with memory capabilities
my_crew = Crew(
agents=[...],
tasks=[...],
process="Process.sequential",
memory=True,
long_term_memory=EnhanceLongTermMemory(
storage=LTMSQLiteStorage(
db_path="/my_data_dir/my_crew1/long_term_memory_storage.db"
)
),
short_term_memory=EnhanceShortTermMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="short_term",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
),
),
entity_memory=EnhanceEntityMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="entities",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
),
),
verbose=True,
)
```
## Additional Embedding Providers ## Additional Embedding Providers
### Using OpenAI embeddings (already default) ### Using OpenAI embeddings (already default)
@@ -96,17 +51,17 @@ my_crew = Crew(
from crewai import Crew, Agent, Task, Process from crewai import Crew, Agent, Task, Process
my_crew = Crew( my_crew = Crew(
agents=[...], agents=[...],
tasks=[...], tasks=[...],
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder={
"provider": "openai", "provider": "openai",
"config": { "config":{
"model": 'text-embedding-3-small' "model": 'text-embedding-3-small'
} }
} }
) )
``` ```
@@ -115,19 +70,19 @@ my_crew = Crew(
from crewai import Crew, Agent, Task, Process from crewai import Crew, Agent, Task, Process
my_crew = Crew( my_crew = Crew(
agents=[...], agents=[...],
tasks=[...], tasks=[...],
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder={
"provider": "google", "provider": "google",
"config": { "config":{
"model": 'models/embedding-001', "model": 'models/embedding-001',
"task_type": "retrieval_document", "task_type": "retrieval_document",
"title": "Embeddings for Embedchain" "title": "Embeddings for Embedchain"
} }
} }
) )
``` ```
@@ -136,18 +91,18 @@ my_crew = Crew(
from crewai import Crew, Agent, Task, Process from crewai import Crew, Agent, Task, Process
my_crew = Crew( my_crew = Crew(
agents=[...], agents=[...],
tasks=[...], tasks=[...],
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder={
"provider": "azure_openai", "provider": "azure_openai",
"config": { "config":{
"model": 'text-embedding-ada-002', "model": 'text-embedding-ada-002',
"deployment_name": "your_embedding_model_deployment_name" "deployment_name": "you_embedding_model_deployment_name"
} }
} }
) )
``` ```
@@ -156,14 +111,14 @@ my_crew = Crew(
from crewai import Crew, Agent, Task, Process from crewai import Crew, Agent, Task, Process
my_crew = Crew( my_crew = Crew(
agents=[...], agents=[...],
tasks=[...], tasks=[...],
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder={
"provider": "gpt4all" "provider": "gpt4all"
} }
) )
``` ```
@@ -172,17 +127,17 @@ my_crew = Crew(
from crewai import Crew, Agent, Task, Process from crewai import Crew, Agent, Task, Process
my_crew = Crew( my_crew = Crew(
agents=[...], agents=[...],
tasks=[...], tasks=[...],
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder={
"provider": "vertexai", "provider": "vertexai",
"config": { "config":{
"model": 'textembedding-gecko' "model": 'textembedding-gecko'
} }
} }
) )
``` ```
@@ -191,52 +146,21 @@ my_crew = Crew(
from crewai import Crew, Agent, Task, Process from crewai import Crew, Agent, Task, Process
my_crew = Crew( my_crew = Crew(
agents=[...], agents=[...],
tasks=[...], tasks=[...],
process=Process.sequential, process=Process.sequential,
memory=True, memory=True,
verbose=True, verbose=True,
embedder={ embedder={
"provider": "cohere", "provider": "cohere",
"config": { "config":{
"model": "embed-english-v3.0", "model": "embed-english-v3.0"
"vector_dimension": 1024 "vector_dimension": 1024
} }
} }
) )
``` ```
### Resetting Memory
```sh
crewai reset_memories [OPTIONS]
```
#### Resetting Memory Options
- **`-l, --long`**
- **Description:** Reset LONG TERM memory.
- **Type:** Flag (boolean)
- **Default:** False
- **`-s, --short`**
- **Description:** Reset SHORT TERM memory.
- **Type:** Flag (boolean)
- **Default:** False
- **`-e, --entities`**
- **Description:** Reset ENTITIES memory.
- **Type:** Flag (boolean)
- **Default:** False
- **`-k, --kickoff-outputs`**
- **Description:** Reset LATEST KICKOFF TASK OUTPUTS.
- **Type:** Flag (boolean)
- **Default:** False
- **`-a, --all`**
- **Description:** Reset ALL memories.
- **Type:** Flag (boolean)
- **Default:** False
## Benefits of Using crewAI's Memory System ## Benefits of Using crewAI's Memory System
- **Adaptive Learning:** Crews become more efficient over time, adapting to new information and refining their approach to tasks. - **Adaptive Learning:** Crews become more efficient over time, adapting to new information and refining their approach to tasks.
- **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences. - **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences.

View File

@@ -1,268 +0,0 @@
---
title: crewAI Pipelines
description: Understanding and utilizing pipelines in the crewAI framework for efficient multi-stage task processing.
---
## What is a Pipeline?
A pipeline in crewAI represents a structured workflow that allows for the sequential or parallel execution of multiple crews. It provides a way to organize complex processes involving multiple stages, where the output of one stage can serve as input for subsequent stages.
## Key Terminology
Understanding the following terms is crucial for working effectively with pipelines:
- **Stage**: A distinct part of the pipeline, which can be either sequential (a single crew) or parallel (multiple crews executing concurrently).
- **Kickoff**: A specific execution of the pipeline for a given set of inputs, representing a single instance of processing through the pipeline.
- **Branch**: Parallel executions within a stage (e.g., concurrent crew operations).
- **Trace**: The journey of an individual input through the entire pipeline, capturing the path and transformations it undergoes.
Example pipeline structure:
```
crew1 >> [crew2, crew3] >> crew4
```
This represents a pipeline with three stages:
1. A sequential stage (crew1)
2. A parallel stage with two branches (crew2 and crew3 executing concurrently)
3. Another sequential stage (crew4)
Each input creates its own kickoff, flowing through all stages of the pipeline. Multiple kickoffs can be processed concurrently, each following the defined pipeline structure.
## Pipeline Attributes
| Attribute | Parameters | Description |
| :--------- | :---------- | :----------------------------------------------------------------------------------------------------------------- |
| **Stages** | `stages` | A list of `PipelineStage` (crews, lists of crews, or routers) representing the stages to be executed in sequence. |
## Creating a Pipeline
When creating a pipeline, you define a series of stages, each consisting of either a single crew or a list of crews for parallel execution. The pipeline ensures that each stage is executed in order, with the output of one stage feeding into the next.
### Example: Assembling a Pipeline
```python
from crewai import Crew, Process, Pipeline
# Define your crews
research_crew = Crew(
agents=[researcher],
tasks=[research_task],
process=Process.sequential
)
analysis_crew = Crew(
agents=[analyst],
tasks=[analysis_task],
process=Process.sequential
)
writing_crew = Crew(
agents=[writer],
tasks=[writing_task],
process=Process.sequential
)
# Assemble the pipeline
my_pipeline = Pipeline(
stages=[research_crew, analysis_crew, writing_crew]
)
```
## Pipeline Methods
| Method | Description |
| :--------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **kickoff** | Executes the pipeline, processing all stages and returning the results. This method initiates one or more kickoffs through the pipeline, handling the flow of data between stages. |
| **process_runs** | Runs the pipeline for each input provided, handling the flow and transformation of data between stages. |
## Pipeline Output
!!! note "Understanding Pipeline Outputs"
The output of a pipeline in the crewAI framework is encapsulated within the `PipelineKickoffResult` class. This class provides a structured way to access the results of the pipeline's execution, including various formats such as raw strings, JSON, and Pydantic models.
### Pipeline Output Attributes
| Attribute | Parameters | Type | Description |
| :-------------- | :------------ | :------------------------ | :-------------------------------------------------------------------------------------------------------- |
| **ID** | `id` | `UUID4` | A unique identifier for the pipeline output. |
| **Run Results** | `run_results` | `List[PipelineRunResult]` | A list of `PipelineRunResult` objects, each representing the output of a single run through the pipeline. |
### Pipeline Output Methods
| Method/Property | Description |
| :----------------- | :----------------------------------------------------- |
| **add_run_result** | Adds a `PipelineRunResult` to the list of run results. |
### Pipeline Run Result Attributes
| Attribute | Parameters | Type | Description |
| :---------------- | :-------------- | :------------------------- | :-------------------------------------------------------------------------------------------- |
| **ID** | `id` | `UUID4` | A unique identifier for the run result. |
| **Raw** | `raw` | `str` | The raw output of the final stage in the pipeline kickoff. |
| **Pydantic** | `pydantic` | `Any` | A Pydantic model object representing the structured output of the final stage, if applicable. |
| **JSON Dict** | `json_dict` | `Union[Dict[str, Any], None]` | A dictionary representing the JSON output of the final stage, if applicable. |
| **Token Usage** | `token_usage` | `Dict[str, UsageMetrics]` | A summary of token usage across all stages of the pipeline kickoff. |
| **Trace** | `trace` | `List[Any]` | A trace of the journey of inputs through the pipeline kickoff. |
| **Crews Outputs** | `crews_outputs` | `List[CrewOutput]` | A list of `CrewOutput` objects, representing the outputs from each crew in the pipeline kickoff. |
### Pipeline Run Result Methods and Properties
| Method/Property | Description |
| :-------------- | :------------------------------------------------------------------------------------------------------- |
| **json** | Returns the JSON string representation of the run result if the output format of the final task is JSON. |
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
| **str** | Returns the string representation of the run result, prioritizing Pydantic, then JSON, then raw. |
### Accessing Pipeline Outputs
Once a pipeline has been executed, its output can be accessed through the `PipelineOutput` object returned by the `process_runs` method. The `PipelineOutput` class provides access to individual `PipelineRunResult` objects, each representing a single run through the pipeline.
#### Example
```python
# Define input data for the pipeline
input_data = [{"initial_query": "Latest advancements in AI"}, {"initial_query": "Future of robotics"}]
# Execute the pipeline
pipeline_output = await my_pipeline.process_runs(input_data)
# Access the results
for run_result in pipeline_output.run_results:
print(f"Run ID: {run_result.id}")
print(f"Final Raw Output: {run_result.raw}")
if run_result.json_dict:
print(f"JSON Output: {json.dumps(run_result.json_dict, indent=2)}")
if run_result.pydantic:
print(f"Pydantic Output: {run_result.pydantic}")
print(f"Token Usage: {run_result.token_usage}")
print(f"Trace: {run_result.trace}")
print("Crew Outputs:")
for crew_output in run_result.crews_outputs:
print(f" Crew: {crew_output.raw}")
print("\n")
```
This example demonstrates how to access and work with the pipeline output, including individual run results and their associated data.
## Using Pipelines
Pipelines are particularly useful for complex workflows that involve multiple stages of processing, analysis, or content generation. They allow you to:
1. **Sequence Operations**: Execute crews in a specific order, ensuring that the output of one crew is available as input to the next.
2. **Parallel Processing**: Run multiple crews concurrently within a stage for increased efficiency.
3. **Manage Complex Workflows**: Break down large tasks into smaller, manageable steps executed by specialized crews.
### Example: Running a Pipeline
```python
# Define input data for the pipeline
input_data = [{"initial_query": "Latest advancements in AI"}]
# Execute the pipeline, initiating a run for each input
results = await my_pipeline.process_runs(input_data)
# Access the results
for result in results:
print(f"Final Output: {result.raw}")
print(f"Token Usage: {result.token_usage}")
print(f"Trace: {result.trace}") # Shows the path of the input through all stages
```
## Advanced Features
### Parallel Execution within Stages
You can define parallel execution within a stage by providing a list of crews, creating multiple branches:
```python
parallel_analysis_crew = Crew(agents=[financial_analyst], tasks=[financial_analysis_task])
market_analysis_crew = Crew(agents=[market_analyst], tasks=[market_analysis_task])
my_pipeline = Pipeline(
stages=[
research_crew,
[parallel_analysis_crew, market_analysis_crew], # Parallel execution (branching)
writing_crew
]
)
```
### Routers in Pipelines
Routers are a powerful feature in crewAI pipelines that allow for dynamic decision-making and branching within your workflow. They enable you to direct the flow of execution based on specific conditions or criteria, making your pipelines more flexible and adaptive.
#### What is a Router?
A router in crewAI is a special component that can be included as a stage in your pipeline. It evaluates the input data and determines which path the execution should take next. This allows for conditional branching in your pipeline, where different crews or sub-pipelines can be executed based on the router's decision.
#### Key Components of a Router
1. **Routes**: A dictionary of named routes, each associated with a condition and a pipeline to execute if the condition is met.
2. **Default Route**: A fallback pipeline that is executed if none of the defined route conditions are met.
#### Creating a Router
Here's an example of how to create a router:
```python
from crewai import Router, Route, Pipeline, Crew, Agent, Task
# Define your agents
classifier = Agent(name="Classifier", role="Email Classifier")
urgent_handler = Agent(name="Urgent Handler", role="Urgent Email Processor")
normal_handler = Agent(name="Normal Handler", role="Normal Email Processor")
# Define your tasks
classify_task = Task(description="Classify the email based on its content and metadata.")
urgent_task = Task(description="Process and respond to urgent email quickly.")
normal_task = Task(description="Process and respond to normal email thoroughly.")
# Define your crews
classification_crew = Crew(agents=[classifier], tasks=[classify_task]) # classify email between high and low urgency 1-10
urgent_crew = Crew(agents=[urgent_handler], tasks=[urgent_task])
normal_crew = Crew(agents=[normal_handler], tasks=[normal_task])
# Create pipelines for different urgency levels
urgent_pipeline = Pipeline(stages=[urgent_crew])
normal_pipeline = Pipeline(stages=[normal_crew])
# Create a router
email_router = Router(
routes={
"high_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) > 7,
pipeline=urgent_pipeline
),
"low_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) <= 7,
pipeline=normal_pipeline
)
},
default=Pipeline(stages=[normal_pipeline]) # Default to just normal if no urgency score
)
# Use the router in a main pipeline
main_pipeline = Pipeline(stages=[classification_crew, email_router])
inputs = [{"email": "..."}, {"email": "..."}] # List of email data
main_pipeline.kickoff(inputs=inputs)
```
In this example, the router decides between an urgent pipeline and a normal pipeline based on the urgency score of the email. If the urgency score is greater than 7, it routes to the urgent pipeline; otherwise, it uses the normal pipeline. If the input doesn't include an urgency score, it defaults to just the classification crew.
#### Benefits of Using Routers
1. **Dynamic Workflow**: Adapt your pipeline's behavior based on input characteristics or intermediate results.
2. **Efficiency**: Route urgent tasks to quicker processes, reserving more thorough pipelines for less time-sensitive inputs.
3. **Flexibility**: Easily modify or extend your pipeline's logic without changing the core structure.
4. **Scalability**: Handle a wide range of email types and urgency levels with a single pipeline structure.
### Error Handling and Validation
The `Pipeline` class includes validation mechanisms to ensure the robustness of the pipeline structure:
- Validates that stages contain only Crew instances or lists of Crew instances.
- Prevents double nesting of stages to maintain a clear structure.

View File

@@ -1,133 +0,0 @@
---
title: crewAI Planning
description: Learn how to add planning to your crewAI Crew and improve their performance.
---
## Introduction
The planning feature in CrewAI allows you to add planning capability to your crew. When enabled, before each Crew iteration, all Crew information is sent to an AgentPlanner that will plan the tasks step by step, and this plan will be added to each task description.
### Using the Planning Feature
Getting started with the planning feature is very easy, the only step required is to add `planning=True` to your Crew:
```python
from crewai import Crew, Agent, Task, Process
# Assemble your crew with planning capabilities
my_crew = Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
planning=True,
)
```
From this point on, your crew will have planning enabled, and the tasks will be planned before each iteration.
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
```python
from crewai import Crew, Agent, Task, Process
from langchain_openai import ChatOpenAI
# Assemble your crew with planning capabilities and custom LLM
my_crew = Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
planning=True,
planning_llm=ChatOpenAI(model="gpt-4o")
)
```
### Example
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents' tasks.
```
[2024-07-15 16:49:11][INFO]: Planning the crew execution
**Step-by-Step Plan for Task Execution**
**Task Number 1: Conduct a thorough research about AI LLMs**
**Agent:** AI LLMs Senior Data Researcher
**Agent Goal:** Uncover cutting-edge developments in AI LLMs
**Task Expected Output:** A list with 10 bullet points of the most relevant information about AI LLMs
**Task Tools:** None specified
**Agent Tools:** None specified
**Step-by-Step Plan:**
1. **Define Research Scope:**
- Determine the specific areas of AI LLMs to focus on, such as advancements in architecture, use cases, ethical considerations, and performance metrics.
2. **Identify Reliable Sources:**
- List reputable sources for AI research, including academic journals, industry reports, conferences (e.g., NeurIPS, ACL), AI research labs (e.g., OpenAI, Google AI), and online databases (e.g., IEEE Xplore, arXiv).
3. **Collect Data:**
- Search for the latest papers, articles, and reports published in 2023 and early 2024.
- Use keywords like "Large Language Models 2024", "AI LLM advancements", "AI ethics 2024", etc.
4. **Analyze Findings:**
- Read and summarize the key points from each source.
- Highlight new techniques, models, and applications introduced in the past year.
5. **Organize Information:**
- Categorize the information into relevant topics (e.g., new architectures, ethical implications, real-world applications).
- Ensure each bullet point is concise but informative.
6. **Create the List:**
- Compile the 10 most relevant pieces of information into a bullet point list.
- Review the list to ensure clarity and relevance.
**Expected Output:**
A list with 10 bullet points of the most relevant information about AI LLMs.
---
**Task Number 2: Review the context you got and expand each topic into a full section for a report**
**Agent:** AI LLMs Reporting Analyst
**Agent Goal:** Create detailed reports based on AI LLMs data analysis and research findings
**Task Expected Output:** A fully fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'
**Task Tools:** None specified
**Agent Tools:** None specified
**Step-by-Step Plan:**
1. **Review the Bullet Points:**
- Carefully read through the list of 10 bullet points provided by the AI LLMs Senior Data Researcher.
2. **Outline the Report:**
- Create an outline with each bullet point as a main section heading.
- Plan sub-sections under each main heading to cover different aspects of the topic.
3. **Research Further Details:**
- For each bullet point, conduct additional research if necessary to gather more detailed information.
- Look for case studies, examples, and statistical data to support each section.
4. **Write Detailed Sections:**
- Expand each bullet point into a comprehensive section.
- Ensure each section includes an introduction, detailed explanation, examples, and a conclusion.
- Use markdown formatting for headings, subheadings, lists, and emphasis.
5. **Review and Edit:**
- Proofread the report for clarity, coherence, and correctness.
- Make sure the report flows logically from one section to the next.
- Format the report according to markdown standards.
6. **Finalize the Report:**
- Ensure the report is complete with all sections expanded and detailed.
- Double-check formatting and make any necessary adjustments.
**Expected Output:**
A fully fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'.

View File

@@ -55,5 +55,10 @@ Emulates a corporate hierarchy, CrewAI allows specifying a custom manager agent
## Process Class: Detailed Overview ## Process Class: Detailed Overview
The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential`, `hierarchical`). The consensual process is planned for future inclusion, emphasizing our commitment to continuous development and innovation. The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential`, `hierarchical`). The consensual process is planned for future inclusion, emphasizing our commitment to continuous development and innovation.
## Additional Task Features
- **Asynchronous Execution**: Tasks can now be executed asynchronously, allowing for parallel processing and efficiency improvements. This feature is designed to enable tasks to be carried out concurrently, enhancing the overall productivity of the crew.
- **Human Input Review**: An optional feature that enables the review of task outputs by humans to ensure quality and accuracy before finalization. This additional step introduces a layer of oversight, providing an opportunity for human intervention and validation.
- **Output Customization**: Tasks support various output formats, including JSON (`output_json`), Pydantic models (`output_pydantic`), and file outputs (`output_file`), providing flexibility in how task results are captured and utilized. This allows for a wide range of output possibilities, catering to different needs and requirements.
## Conclusion ## Conclusion
The structured collaboration facilitated by processes within CrewAI is crucial for enabling systematic teamwork among agents. This documentation has been updated to reflect the latest features, enhancements, and the planned integration of the Consensual Process, ensuring users have access to the most current and comprehensive information. The structured collaboration facilitated by processes within CrewAI is crucial for enabling systematic teamwork among agents. This documentation has been updated to reflect the latest features, enhancements, and the planned integration of the Consensual Process, ensuring users have access to the most current and comprehensive information.

View File

@@ -12,22 +12,21 @@ Tasks within crewAI can be collaborative, requiring multiple agents to work toge
## Task Attributes ## Task Attributes
| Attribute | Parameters | Type | Description | | Attribute | Parameters | Description |
| :------------------------------- | :---------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- | | :------------------------------- | :---------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Description** | `description` | `str` | A clear, concise statement of what the task entails. | | **Description** | `description` | A clear, concise statement of what the task entails. |
| **Agent** | `agent` | `Optional[BaseAgent]` | The agent responsible for the task, assigned either directly or by the crew's process. | | **Agent** | `agent` | The agent responsible for the task, assigned either directly or by the crew's process. |
| **Expected Output** | `expected_output` | `str` | A detailed description of what the task's completion looks like. | | **Expected Output** | `expected_output` | A detailed description of what the task's completion looks like. |
| **Tools** _(optional)_ | `tools` | `Optional[List[Any]]` | The functions or capabilities the agent can utilize to perform the task. Defaults to an empty list. | | **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | If set, the task executes asynchronously, allowing progression without waiting for completion. Defaults to False. | | **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. |
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Specifies tasks whose outputs are used as context for this task. | | **Context** _(optional)_ | `context` | Specifies tasks whose outputs are used as context for this task. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Additional configuration details for the agent executing the task, allowing further customization. Defaults to None. | | **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. | | **Output JSON** _(optional)_ | `output_json` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. | | **Output Pydantic** _(optional)_ | `output_pydantic` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. | | **Output File** _(optional)_ | `output_file` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
| **Output** _(optional)_ | `output` | `Optional[TaskOutput]` | An instance of `TaskOutput`, containing the raw, JSON, and Pydantic output plus additional details. | | **Output** _(optional)_ | `output` | The output of the task, containing the raw, JSON, and Pydantic output plus additional details. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | A callable that is executed with the task's output upon completion. | | **Callback** _(optional)_ | `callback` | A Python callable that is executed with the task's output upon completion. |
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Indicates if the task should involve human review at the end, useful for tasks needing human oversight. Defaults to False.| | **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. |
| **Converter Class** _(optional)_ | `converter_cls` | `Optional[Type[Converter]]` | A converter class used to export structured output. Defaults to None. |
## Creating a Task ## Creating a Task
@@ -49,28 +48,28 @@ Directly specify an `agent` for assignment or let the `hierarchical` CrewAI's pr
## Task Output ## Task Output
!!! note "Understanding Task Outputs" !!! note "Understanding Task Outputs"
The output of a task in the crewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw output, JSON, and Pydantic models. The output of a task in the crewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw strings, JSON, and Pydantic models.
By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput` will only include the `pydantic` or `json_dict` output if the original `Task` object was configured with `output_pydantic` or `output_json`, respectively. By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput` will only include the `pydantic` or `json_dict` output if the original `Task` object was configured with `output_pydantic` or `output_json`, respectively.
### Task Output Attributes ### Task Output Attributes
| Attribute | Parameters | Type | Description | | Attribute | Parameters | Type | Description |
| :---------------- | :-------------- | :------------------------- | :------------------------------------------------------------------------------------------------- | | :---------------- | :-------------- | :------------------------- | :------------------------------------------------------------------------------------------------- |
| **Description** | `description` | `str` | Description of the task. | | **Description** | `description` | `str` | A brief description of the task. |
| **Summary** | `summary` | `Optional[str]` | Summary of the task, auto-generated from the first 10 words of the description. | | **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the description. |
| **Raw** | `raw` | `str` | The raw output of the task. This is the default format for the output. | | **Raw** | `raw` | `str` | The raw output of the task. This is the default format for the output. |
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the task. | | **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the task. |
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. | | **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
| **Agent** | `agent` | `str` | The agent that executed the task. | | **Agent** | `agent` | `str` | The agent that executed the task. |
| **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. | | **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. |
### Task Methods and Properties ### Task Output Methods and Properties
| Method/Property | Description | | Method/Property | Description |
| :-------------- | :------------------------------------------------------------------------------------------------ | | :-------------- | :------------------------------------------------------------------------------------------------ |
| **json** | Returns the JSON string representation of the task output if the output format is JSON. | | **json** | Returns the JSON string representation of the task output if the output format is JSON. |
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. | | **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
| **str** | Returns the string representation of the task output, prioritizing Pydantic, then JSON, then raw. | | \***\*str\*\*** | Returns the string representation of the task output, prioritizing Pydantic, then JSON, then raw. |
### Accessing Task Outputs ### Accessing Task Outputs
@@ -91,7 +90,7 @@ task = Task(
crew = Crew( crew = Crew(
agents=[research_agent], agents=[research_agent],
tasks=[task], tasks=[task],
verbose=True verbose=2
) )
result = crew.kickoff() result = crew.kickoff()
@@ -131,7 +130,6 @@ research_agent = Agent(
verbose=True verbose=True
) )
# to perform a semantic search for a specified query from a text's content across the internet
search_tool = SerperDevTool() search_tool = SerperDevTool()
task = Task( task = Task(
@@ -144,7 +142,7 @@ task = Task(
crew = Crew( crew = Crew(
agents=[research_agent], agents=[research_agent],
tasks=[task], tasks=[task],
verbose=True verbose=2
) )
result = crew.kickoff() result = crew.kickoff()
@@ -234,7 +232,7 @@ def callback_function(output: TaskOutput):
print(f""" print(f"""
Task completed! Task completed!
Task: {output.description} Task: {output.description}
Output: {output.raw} Output: {output.raw_output}
""") """)
research_task = Task( research_task = Task(
@@ -266,7 +264,7 @@ task1 = Task(
crew = Crew( crew = Crew(
agents=[research_agent], agents=[research_agent],
tasks=[task1, task2, task3], tasks=[task1, task2, task3],
verbose=True verbose=2
) )
result = crew.kickoff() result = crew.kickoff()
@@ -275,7 +273,7 @@ result = crew.kickoff()
print(f""" print(f"""
Task completed! Task completed!
Task: {task1.output.description} Task: {task1.output.description}
Output: {task1.output.raw} Output: {task1.output.raw_output}
""") """)
``` ```

View File

@@ -1,56 +0,0 @@
---
title: crewAI Testing
description: Learn how to test your crewAI Crew and evaluate their performance.
---
## Introduction
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. With crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
### Using the Testing Feature
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics. The parameters are `n_iterations` and `model`, which are optional and default to 2 and `gpt-4o-mini` respectively. For now, the only provider available is OpenAI.
```bash
crewai test
```
If you want to run more iterations or use a different model, you can specify the parameters like this:
```bash
crewai test --n_iterations 5 --model gpt-4o
```
or using the short forms:
```bash
crewai test -n 5 -m gpt-4o
```
When you run the `crewai test` command, the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
A table of scores at the end will show the performance of the crew in terms of the following metrics:
```
Tasks Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━┯━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Tasks/Crew/Agents │ Run 1 │ Run 2 │ Avg. Total │ Agents │ ┃
┠────────────────────┼───────┼───────┼────────────┼────────────────────────────────┼─────────────────────────────────┨
┃ Task 1 │ 9.0 │ 9.5 │ 9.2 │ - Professional Insights │ ┃
┃ │ │ │ │ Researcher │ ┃
┃ │ │ │ │ │ ┃
┃ Task 2 │ 9.0 │ 10.0 │ 9.5 │ - Company Profile Investigator │ ┃
┃ │ │ │ │ │ ┃
┃ Task 3 │ 9.0 │ 9.0 │ 9.0 │ - Automation Insights │ ┃
┃ │ │ │ │ Specialist │ ┃
┃ │ │ │ │ │ ┃
┃ Task 4 │ 9.0 │ 9.0 │ 9.0 │ - Final Report Compiler │ ┃
┃ │ │ │ │ │ - Automation Insights ┃
┃ │ │ │ │ │ Specialist ┃
┃ Crew │ 9.00 │ 9.38 │ 9.2 │ │ ┃
┃ Execution Time (s) │ 126 │ 145 │ 135 │ │ ┃
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
```
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.

View File

@@ -80,12 +80,11 @@ write = Task(
output_file='blog-posts/new_post.md' # The final blog post will be saved here output_file='blog-posts/new_post.md' # The final blog post will be saved here
) )
# Assemble a crew with planning enabled # Assemble a crew
crew = Crew( crew = Crew(
agents=[researcher, writer], agents=[researcher, writer],
tasks=[research, write], tasks=[research, write],
verbose=True, verbose=2
planning=True, # Enable planning feature
) )
# Execute tasks # Execute tasks
@@ -101,36 +100,28 @@ Here is a list of the available tools and their descriptions:
| Tool | Description | | Tool | Description |
| :-------------------------- | :-------------------------------------------------------------------------------------------- | | :-------------------------- | :-------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. | | **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. | | **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. | | **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. | | **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. | | **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. | | **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.| | **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. | | **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. | | **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. | | **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. | | **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. | | **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. | | **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. | | **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. | | **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. | | **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. | | **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. | | **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. | | **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. | | **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. | | **BrowserbaseTool** | A tool for interacting with and extracting data from web browsers. |
| **ExaSearchTool** | A tool designed for performing exhaustive searches across various data sources. |
## Creating your own Tools ## Creating your own Tools
@@ -144,7 +135,6 @@ pip install 'crewai[tools]'
``` ```
Once you do that there are two main ways for one to create a crewAI tool: Once you do that there are two main ways for one to create a crewAI tool:
### Subclassing `BaseTool` ### Subclassing `BaseTool`
```python ```python
@@ -199,5 +189,6 @@ writer1 = Agent(
#... #...
``` ```
## Conclusion ## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities. Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -16,11 +16,9 @@ To use the training feature, follow these steps:
3. Run the following command: 3. Run the following command:
```shell ```shell
crewai train -n <n_iterations> <filename> (optional) crewai train -n <n_iterations>
``` ```
!!! note "Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`."
### Training Your Crew Programmatically ### Training Your Crew Programmatically
To train your crew programmatically, use the following steps: To train your crew programmatically, use the following steps:
@@ -29,20 +27,21 @@ To train your crew programmatically, use the following steps:
3. Execute the training command within a try-except block to handle potential errors. 3. Execute the training command within a try-except block to handle potential errors.
```python ```python
n_iterations = 2 n_iterations = 2
inputs = {"topic": "CrewAI Training"} inputs = {"topic": "CrewAI Training"}
filename = "your_model.pkl"
try: try:
YourCrewName_Crew().crew().train(n_iterations=n_iterations, inputs=inputs, filename=filename) YourCrewName_Crew().crew().train(n_iterations= n_iterations, inputs=inputs)
except Exception as e: except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}") raise Exception(f"An error occurred while training the crew: {e}")
``` ```
!!! note "Replace `<n_iterations>` with the desired number of training iterations. This determines how many times the agents will go through the training process."
### Key Points to Note: ### Key Points to Note:
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met. - **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user. - **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration. It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.

View File

@@ -5,10 +5,9 @@ description: Learn how to integrate LangChain tools with CrewAI agents to enhanc
## Using LangChain Tools ## Using LangChain Tools
!!! info "LangChain Integration" !!! info "LangChain Integration"
CrewAI seamlessly integrates with LangChains comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with crewAI. CrewAI seamlessly integrates with LangChains comprehensive toolkit for search-based queries and more, here are the available built-in tools that are offered by Langchain [LangChain Toolkit](https://python.langchain.com/docs/integrations/tools/)
```python ```python
import os
from crewai import Agent from crewai import Agent
from langchain.agents import Tool from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper from langchain.utilities import GoogleSerperAPIWrapper

View File

@@ -35,10 +35,10 @@ query_tool = LlamaIndexTool.from_query_engine(
# Create and assign the tools to an agent # Create and assign the tools to an agent
agent = Agent( agent = Agent(
role='Research Analyst', role='Research Analyst',
goal='Provide up-to-date market analysis', goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.', backstory='An expert analyst with a keen eye for market trends.',
tools=[tool, *tools, query_tool] tools=[tool, *tools, query_tool]
) )
# rest of the code ... # rest of the code ...
@@ -54,4 +54,4 @@ To effectively use the LlamaIndexTool, follow these steps:
pip install 'crewai[tools]' pip install 'crewai[tools]'
``` ```
2. **Install and Use LlamaIndex**: Follow the LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline. 2. **Install and Use LlamaIndex**: Follow LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 97 KiB

View File

@@ -1,163 +0,0 @@
# Creating a CrewAI Pipeline Project
Welcome to the comprehensive guide for creating a new CrewAI pipeline project. This document will walk you through the steps to create, customize, and run your CrewAI pipeline project, ensuring you have everything you need to get started.
To learn more about CrewAI pipelines, visit the [CrewAI documentation](https://docs.crewai.com/core-concepts/Pipeline/).
## Prerequisites
Before getting started with CrewAI pipelines, make sure that you have installed CrewAI via pip:
```shell
$ pip install crewai crewai-tools
```
The same prerequisites for virtual environments and Code IDEs apply as in regular CrewAI projects.
## Creating a New Pipeline Project
To create a new CrewAI pipeline project, you have two options:
1. For a basic pipeline template:
```shell
$ crewai create pipeline <project_name>
```
2. For a pipeline example that includes a router:
```shell
$ crewai create pipeline --router <project_name>
```
These commands will create a new project folder with the following structure:
```
<project_name>/
├── README.md
├── poetry.lock
├── pyproject.toml
├── src/
│ └── <project_name>/
│ ├── __init__.py
│ ├── main.py
│ ├── crews/
│ │ ├── crew1/
│ │ │ ├── crew1.py
│ │ │ └── config/
│ │ │ ├── agents.yaml
│ │ │ └── tasks.yaml
│ │ ├── crew2/
│ │ │ ├── crew2.py
│ │ │ └── config/
│ │ │ ├── agents.yaml
│ │ │ └── tasks.yaml
│ ├── pipelines/
│ │ ├── __init__.py
│ │ ├── pipeline1.py
│ │ └── pipeline2.py
│ └── tools/
│ ├── __init__.py
│ └── custom_tool.py
└── tests/
```
## Customizing Your Pipeline Project
To customize your pipeline project, you can:
1. Modify the crew files in `src/<project_name>/crews/` to define your agents and tasks for each crew.
2. Modify the pipeline files in `src/<project_name>/pipelines/` to define your pipeline structure.
3. Modify `src/<project_name>/main.py` to set up and run your pipelines.
4. Add your environment variables into the `.env` file.
## Example 1: Defining a Two-Stage Sequential Pipeline
Here's an example of how to define a pipeline with sequential stages in `src/<project_name>/pipelines/pipeline.py`:
```python
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.research_crew.research_crew import ResearchCrew
from ..crews.write_x_crew.write_x_crew import WriteXCrew
@PipelineBase
class SequentialPipeline:
def __init__(self):
# Initialize crews
self.research_crew = ResearchCrew().crew()
self.write_x_crew = WriteXCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.research_crew,
self.write_x_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results
```
## Example 2: Defining a Two-Stage Pipeline with Parallel Execution
```python
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.research_crew.research_crew import ResearchCrew
from ..crews.write_x_crew.write_x_crew import WriteXCrew
from ..crews.write_linkedin_crew.write_linkedin_crew import WriteLinkedInCrew
@PipelineBase
class ParallelExecutionPipeline:
def __init__(self):
# Initialize crews
self.research_crew = ResearchCrew().crew()
self.write_x_crew = WriteXCrew().crew()
self.write_linkedin_crew = WriteLinkedInCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.research_crew,
[self.write_x_crew, self.write_linkedin_crew] # Parallel execution
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results
```
### Annotations
The main annotation you'll use for pipelines is `@PipelineBase`. This annotation is used to decorate your pipeline classes, similar to how `@CrewBase` is used for crews.
## Installing Dependencies
To install the dependencies for your project, use Poetry:
```shell
$ cd <project_name>
$ crewai install
```
## Running Your Pipeline Project
To run your pipeline project, use the following command:
```shell
$ crewai run
```
This will initialize your pipeline and begin task execution as defined in your `main.py` file.
## Deploying Your Pipeline Project
Pipelines can be deployed in the same way as regular CrewAI projects. The easiest way is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your pipeline in a few clicks.
Remember, when working with pipelines, you're orchestrating multiple crews to work together in a sequence or parallel fashion. This allows for more complex workflows and information processing tasks.

View File

@@ -36,7 +36,7 @@ Additionally, AgentOps provides session drilldowns for viewing Crew agent intera
### Using AgentOps ### Using AgentOps
1. **Create an API Key:** 1. **Create an API Key:**
Create a user API key here: [Create API Key](https://app.agentops.ai/account) Create a user API key here: [Create API Key](app.agentops.ai/account)
2. **Configure Your Environment:** 2. **Configure Your Environment:**
Add your API key to your environment variables Add your API key to your environment variables
@@ -83,4 +83,4 @@ For feature requests or bug reports, please reach out to the AgentOps team on th
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span> <span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a> <a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span> <span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a> <a href="https://docs.agentops.ai/introduction">📙 Documentation</a>

View File

@@ -22,13 +22,11 @@ coding_agent = Agent(
) )
``` ```
**Note**: The `allow_code_execution` parameter defaults to `False`.
## Important Considerations ## Important Considerations
1. **Model Selection**: It is strongly recommended to use more capable models like Claude 3.5 Sonnet and GPT-4 when enabling code execution. These models have a better understanding of programming concepts and are more likely to generate correct and efficient code. 1. **Model Selection**: It is strongly recommended to use more capable models like Claude 3.5 Sonnet and GPT-4 when enabling code execution. These models have a better understanding of programming concepts and are more likely to generate correct and efficient code.
2. **Error Handling**: The code execution feature includes error handling. If executed code raises an exception, the agent will receive the error message and can attempt to correct the code or provide alternative solutions. The `max_retry_limit` parameter, which defaults to 2, controls the maximum number of retries for a task. 2. **Error Handling**: The code execution feature includes error handling. If executed code raises an exception, the agent will receive the error message and can attempt to correct the code or provide alternative solutions.
3. **Dependencies**: To use the code execution feature, you need to install the `crewai_tools` package. If not installed, the agent will log an info message: "Coding tools not available. Install crewai_tools." 3. **Dependencies**: To use the code execution feature, you need to install the `crewai_tools` package. If not installed, the agent will log an info message: "Coding tools not available. Install crewai_tools."
@@ -75,4 +73,4 @@ result = analysis_crew.kickoff()
print(result) print(result)
``` ```
In this example, the `coding_agent` can write and execute Python code to perform data analysis tasks. In this example, the `coding_agent` can write and execute Python code to perform data analysis tasks.

View File

@@ -1,87 +0,0 @@
---
title: Conditional Tasks
description: Learn how to use conditional tasks in a crewAI kickoff
---
## Introduction
Conditional Tasks in crewAI allow for dynamic workflow adaptation based on the outcomes of previous tasks. This powerful feature enables crews to make decisions and execute tasks selectively, enhancing the flexibility and efficiency of your AI-driven processes.
## Example Usage
```python
from typing import List
from pydantic import BaseModel
from crewai import Agent, Crew
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.task import Task
from crewai_tools import SerperDevTool
# Define a condition function for the conditional task
# If false, the task will be skipped, if true, then execute the task.
def is_data_missing(output: TaskOutput) -> bool:
return len(output.pydantic.events) < 10 # this will skip this task
# Define the agents
data_fetcher_agent = Agent(
role="Data Fetcher",
goal="Fetch data online using Serper tool",
backstory="Backstory 1",
verbose=True,
tools=[SerperDevTool()]
)
data_processor_agent = Agent(
role="Data Processor",
goal="Process fetched data",
backstory="Backstory 2",
verbose=True
)
summary_generator_agent = Agent(
role="Summary Generator",
goal="Generate summary from fetched data",
backstory="Backstory 3",
verbose=True
)
class EventOutput(BaseModel):
events: List[str]
task1 = Task(
description="Fetch data about events in San Francisco using Serper tool",
expected_output="List of 10 things to do in SF this week",
agent=data_fetcher_agent,
output_pydantic=EventOutput,
)
conditional_task = ConditionalTask(
description="""
Check if data is missing. If we have less than 10 events,
fetch more events using Serper tool so that
we have a total of 10 events in SF this week..
""",
expected_output="List of 10 Things to do in SF this week",
condition=is_data_missing,
agent=data_processor_agent,
)
task3 = Task(
description="Generate summary of events in San Francisco from fetched data",
expected_output="A complete report on the customer and their customers and competitors, including their demographics, preferences, market positioning and audience engagement.",
agent=summary_generator_agent,
)
# Create a crew with the tasks
crew = Crew(
agents=[data_fetcher_agent, data_processor_agent, summary_generator_agent],
tasks=[task1, conditional_task, task3],
verbose=True,
planning=True
)
# Run the crew
result = crew.kickoff()
print("results", result)
```

View File

@@ -7,7 +7,6 @@ description: Comprehensive guide on crafting, using, and managing custom tools w
This guide provides detailed instructions on creating custom tools for the crewAI framework and how to efficiently manage and utilize these tools, incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools, enabling agents to perform a wide range of actions. This guide provides detailed instructions on creating custom tools for the crewAI framework and how to efficiently manage and utilize these tools, incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools, enabling agents to perform a wide range of actions.
### Prerequisites ### Prerequisites
Before creating your own tools, ensure you have the crewAI extra tools package installed: Before creating your own tools, ensure you have the crewAI extra tools package installed:
```bash ```bash
@@ -32,7 +31,7 @@ class MyCustomTool(BaseTool):
### Using the `tool` Decorator ### Using the `tool` Decorator
Alternatively, you can use the tool decorator `@tool`. This approach allows you to define the tool's attributes and functionality directly within a function, offering a concise and efficient way to create specialized tools tailored to your needs. Alternatively, use the `tool` decorator for a direct approach to create tools. This requires specifying attributes and the tool's logic within a function.
```python ```python
from crewai_tools import tool from crewai_tools import tool

View File

@@ -0,0 +1,82 @@
---
title: Assembling and Activating Your CrewAI Team
description: A comprehensive guide to creating a dynamic CrewAI team for your projects, with updated functionalities including verbose mode, memory capabilities, asynchronous execution, output customization, language model configuration, code execution, integration with third-party agents, and improved task management.
---
## Introduction
Embark on your CrewAI journey by setting up your environment and initiating your AI crew with the latest features. This guide ensures a smooth start, incorporating all recent updates for an enhanced experience, including code execution capabilities, integration with third-party agents, and advanced task management.
## Step 0: Installation
Install CrewAI and any necessary packages for your project. CrewAI is compatible with Python >=3.10,<=3.13.
```shell
pip install crewai
pip install 'crewai[tools]'
```
## Step 1: Assemble Your Agents
Define your agents with distinct roles, backstories, and enhanced capabilities. The Agent class now supports a wide range of attributes for fine-tuned control over agent behavior and interactions, including code execution and integration with third-party agents.
```python
import os
from langchain.llms import OpenAI
from crewai import Agent
from crewai_tools import SerperDevTool, BrowserbaseTool, ExaSearchTool
os.environ["OPENAI_API_KEY"] = "Your OpenAI Key"
os.environ["SERPER_API_KEY"] = "Your Serper Key"
search_tool = SerperDevTool()
browser_tool = BrowserbaseTool()
exa_search_tool = ExaSearchTool()
# Creating a senior researcher agent with advanced configurations
researcher = Agent(
role='Senior Researcher',
goal='Uncover groundbreaking technologies in {topic}',
backstory=("Driven by curiosity, you're at the forefront of innovation, "
"eager to explore and share knowledge that could change the world."),
memory=True,
verbose=True,
allow_delegation=False,
tools=[search_tool, browser_tool],
allow_code_execution=False, # New attribute for enabling code execution
max_iter=15, # Maximum number of iterations for task execution
max_rpm=100, # Maximum requests per minute
max_execution_time=3600, # Maximum execution time in seconds
system_template="Your custom system template here", # Custom system template
prompt_template="Your custom prompt template here", # Custom prompt template
response_template="Your custom response template here", # Custom response template
)
# Creating a writer agent with custom tools and specific configurations
writer = Agent(
role='Writer',
goal='Narrate compelling tech stories about {topic}',
backstory=("With a flair for simplifying complex topics, you craft engaging "
"narratives that captivate and educate, bringing new discoveries to light."),
verbose=True,
allow_delegation=False,
memory=True,
tools=[exa_search_tool],
function_calling_llm=OpenAI(model_name="gpt-3.5-turbo"), # Separate LLM for function calling
)
# Setting a specific manager agent
manager = Agent(
role='Manager',
goal='Ensure the smooth operation and coordination of the team',
verbose=True,
backstory=(
"As a seasoned project manager, you excel in organizing "
"tasks, managing timelines, and ensuring the team stays on track."
),
allow_code_execution=True, # Enable code execution for the manager
)
```
### New Agent Attributes and Features
1. `allow_code_execution`: Enable or disable code execution capabilities for the agent (default is False).
2. `max_execution_time`: Set a maximum execution time (in seconds) for the agent to complete a task.
3. `function_calling_llm`: Specify a separate language model for function calling.

View File

@@ -91,4 +91,4 @@ Custom prompt files should be structured in JSON format and include all necessar
- **Improved Usability**: Supports multiple languages, making it suitable for global projects. - **Improved Usability**: Supports multiple languages, making it suitable for global projects.
- **Consistency**: Ensures uniform prompt structures across different agents and tasks. - **Consistency**: Ensures uniform prompt structures across different agents and tasks.
By incorporating these updates, CrewAI provides users with the ability to fully customize and internationalize their agent prompts, making the platform more versatile and user-friendly. By incorporating these updates, CrewAI provides users with the ability to fully customize and internationalize their agent prompts, making the platform more versatile and user-friendly.

View File

@@ -14,15 +14,12 @@ Crafting an efficient CrewAI team hinges on the ability to dynamically tailor yo
- **Cache** *(Optional)*: Determines whether the agent should use a cache for tool usage. - **Cache** *(Optional)*: Determines whether the agent should use a cache for tool usage.
- **Max RPM**: Sets the maximum number of requests per minute (`max_rpm`). This attribute is optional and can be set to `None` for no limit, allowing for unlimited queries to external services if needed. - **Max RPM**: Sets the maximum number of requests per minute (`max_rpm`). This attribute is optional and can be set to `None` for no limit, allowing for unlimited queries to external services if needed.
- **Verbose** *(Optional)*: Enables detailed logging of an agent's actions, useful for debugging and optimization. Specifically, it provides insights into agent execution processes, aiding in the optimization of performance. - **Verbose** *(Optional)*: Enables detailed logging of an agent's actions, useful for debugging and optimization. Specifically, it provides insights into agent execution processes, aiding in the optimization of performance.
- **Allow Delegation** *(Optional)*: `allow_delegation` controls whether the agent is allowed to delegate tasks to other agents. This attribute is now set to `False` by default. - **Allow Delegation** *(Optional)*: `allow_delegation` controls whether the agent is allowed to delegate tasks to other agents.
- **Max Iter** *(Optional)*: The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency. - **Max Iter** *(Optional)*: The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
- **Max Execution Time** *(Optional)*: `max_execution_time` Sets the maximum execution time for an agent to complete a task. - **Max Execution Time** *(Optional)*: `max_execution_time` Sets the maximum execution time for an agent to complete a task.
- **System Template** *(Optional)*: `system_template` defines the system format for the agent. - **System Template** *(Optional)*: `system_template` defines the system format for the agent.
- **Prompt Template** *(Optional)*: `prompt_template` defines the prompt format for the agent. - **Prompt Template** *(Optional)*: `prompt_template` defines the prompt format for the agent.
- **Response Template** *(Optional)*: `response_template` defines the response format for the agent. - **Response Template** *(Optional)*: `response_template` defines the response format for the agent.
- **Use System Prompt** *(Optional)*: `use_system_prompt` controls whether the agent will use a system prompt for task execution. Agents can now operate without system prompts.
- **Respect Context Window**: `respect_context_window` renames the sliding context window attribute and enables it by default to maintain context size.
- **Max Retry Limit**: `max_retry_limit` defines the maximum number of retries for an agent to execute a task when an error occurs.
## Advanced Customization Options ## Advanced Customization Options
Beyond the basic attributes, CrewAI allows for deeper customization to enhance an agent's behavior and capabilities significantly. Beyond the basic attributes, CrewAI allows for deeper customization to enhance an agent's behavior and capabilities significantly.
@@ -70,11 +67,12 @@ agent = Agent(
verbose=True, verbose=True,
max_rpm=None, # No limit on requests per minute max_rpm=None, # No limit on requests per minute
max_iter=25, # Default value for maximum iterations max_iter=25, # Default value for maximum iterations
allow_delegation=False
) )
``` ```
## Delegation and Autonomy ## Delegation and Autonomy
Controlling an agent's ability to delegate tasks or ask questions is vital for tailoring its autonomy and collaborative dynamics within the CrewAI framework. By default, the `allow_delegation` attribute is now set to `False`, disabling agents to seek assistance or delegate tasks as needed. This default behavior can be changed to promote collaborative problem-solving and efficiency within the CrewAI ecosystem. If needed, delegation can be enabled to suit specific operational requirements. Controlling an agent's ability to delegate tasks or ask questions is vital for tailoring its autonomy and collaborative dynamics within the CrewAI framework. By default, the `allow_delegation` attribute is set to `True`, enabling agents to seek assistance or delegate tasks as needed. This default behavior promotes collaborative problem-solving and efficiency within the CrewAI ecosystem. If needed, delegation can be disabled to suit specific operational requirements.
### Example: Disabling Delegation for an Agent ### Example: Disabling Delegation for an Agent
```python ```python
@@ -82,7 +80,7 @@ agent = Agent(
role='Content Writer', role='Content Writer',
goal='Write engaging content on market trends', goal='Write engaging content on market trends',
backstory='A seasoned writer with expertise in market analysis.', backstory='A seasoned writer with expertise in market analysis.',
allow_delegation=True # Enabling delegation allow_delegation=False # Disabling delegation
) )
``` ```

View File

@@ -1,36 +1,31 @@
--- ---
title: Forcing Tool Output as Result title: Forcing Tool Output as Result
description: Learn how to force tool output as the result in an Agent's task in CrewAI. description: Learn how to force tool output as the result in of an Agent's task in crewAI.
--- ---
## Introduction ## Introduction
In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, avoiding any agent modification during the task execution. In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, and avoid the agent modifying the output during the task execution.
## Forcing Tool Output as Result ## Forcing Tool Output as Result
To force the tool output as the result of an agent's task, you need to set the `result_as_answer` parameter to `True` when adding a tool to the agent. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent. To force the tool output as the result of an agent's task, you can set the `force_tool_output` parameter to `True` when creating the task. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
Here's an example of how to force the tool output as the result of an agent's task: Here's an example of how to force the tool output as the result of an agent's task:
```python ```python
# ... # ...
from crewai.agent import Agent # Define a custom tool that returns the result as the answer
from my_tool import MyCustomTool coding_agent =Agent(
# Create a coding agent with the custom tool
coding_agent = Agent(
role="Data Scientist", role="Data Scientist",
goal="Produce amazing reports on AI", goal="Product amazing resports on AI",
backstory="You work with data and AI", backstory="You work with data and AI",
tools=[MyCustomTool(result_as_answer=True)], tools=[MyCustomTool(result_as_answer=True)],
) )
# ...
# Assuming the tool's execution and result population occurs within the system
task_result = coding_agent.execute_task(task)
``` ```
## Workflow in Action ### Workflow in Action
1. **Task Execution**: The agent executes the task using the tool provided. 1. **Task Execution**: The agent executes the task using the tool provided.
2. **Tool Output**: The tool generates the output, which is captured as the task result. 2. **Tool Output**: The tool generates the output, which is captured as the task result.
3. **Agent Interaction**: The agent may reflect and take learnings from the tool but the output is not modified. 3. **Agent Interaction**: The agent my reflect and take learnings from the tool but the output is not modified.
4. **Result Return**: The tool output is returned as the task result without any modifications. 4. **Result Return**: The tool output is returned as the task result without any modifications.

View File

@@ -16,13 +16,6 @@ By default, tasks in CrewAI are managed through a sequential process. However, a
- **Task Delegation**: A manager agent allocates tasks among crew members based on their roles and capabilities. - **Task Delegation**: A manager agent allocates tasks among crew members based on their roles and capabilities.
- **Result Validation**: The manager evaluates outcomes to ensure they meet the required standards. - **Result Validation**: The manager evaluates outcomes to ensure they meet the required standards.
- **Efficient Workflow**: Emulates corporate structures, providing an organized approach to task management. - **Efficient Workflow**: Emulates corporate structures, providing an organized approach to task management.
- **System Prompt Handling**: Optionally specify whether the system should use predefined prompts.
- **Stop Words Control**: Optionally specify whether stop words should be used, supporting various models including the o1 models.
- **Context Window Respect**: Prioritize important context by enabling respect of the context window, which is now the default behavior.
- **Delegation Control**: Delegation is now disabled by default to give users explicit control.
- **Max Requests Per Minute**: Configurable option to set the maximum number of requests per minute.
- **Max Iterations**: Limit the maximum number of iterations for obtaining a final answer.
## Implementing the Hierarchical Process ## Implementing the Hierarchical Process
To utilize the hierarchical process, it's essential to explicitly set the process attribute to `Process.hierarchical`, as the default behavior is `Process.sequential`. Define a crew with a designated manager and establish a clear chain of command. To utilize the hierarchical process, it's essential to explicitly set the process attribute to `Process.hierarchical`, as the default behavior is `Process.sequential`. Define a crew with a designated manager and establish a clear chain of command.
@@ -45,9 +38,6 @@ researcher = Agent(
cache=True, cache=True,
verbose=False, verbose=False,
# tools=[] # This can be optionally specified; defaults to an empty list # tools=[] # This can be optionally specified; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
) )
writer = Agent( writer = Agent(
role='Writer', role='Writer',
@@ -56,9 +46,6 @@ writer = Agent(
cache=True, cache=True,
verbose=False, verbose=False,
# tools=[] # Optionally specify tools; defaults to an empty list # tools=[] # Optionally specify tools; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
) )
# Establishing the crew with a hierarchical process and additional configurations # Establishing the crew with a hierarchical process and additional configurations
@@ -67,10 +54,8 @@ project_crew = Crew(
agents=[researcher, writer], agents=[researcher, writer],
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set
process=Process.hierarchical, # Specifies the hierarchical management approach process=Process.hierarchical, # Specifies the hierarchical management approach
respect_context_window=True, # Enable respect of the context window for tasks
memory=True, # Enable memory usage for enhanced task execution memory=True, # Enable memory usage for enhanced task execution
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
planning=True, # Enable planning feature for pre-execution strategy
) )
``` ```

View File

@@ -74,17 +74,15 @@ task2 = Task(
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future." "Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
), ),
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024', expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
agent=writer, agent=writer
human_input=True
) )
# Instantiate your crew with a sequential process # Instantiate your crew with a sequential process
crew = Crew( crew = Crew(
agents=[researcher, writer], agents=[researcher, writer],
tasks=[task1, task2], tasks=[task1, task2],
verbose=True, verbose=2,
memory=True, memory=True,
planning=True # Enable planning feature for the crew
) )
# Get your crew to work! # Get your crew to work!

View File

@@ -18,7 +18,4 @@ pip install crewai
# Install the main crewAI package and the tools package # Install the main crewAI package and the tools package
# that includes a series of helpful tools for your agents # that includes a series of helpful tools for your agents
pip install 'crewai[tools]' pip install 'crewai[tools]'
# Alternatively, you can also use:
pip install crewai crewai-tools
``` ```

View File

@@ -4,41 +4,14 @@ description: Kickoff a Crew Asynchronously
--- ---
## Introduction ## Introduction
CrewAI provides the ability to kickoff a crew asynchronously, allowing you to start the crew execution in a non-blocking manner. This feature is particularly useful when you want to run multiple crews concurrently or when you need to perform other tasks while the crew is executing. CrewAI provides the ability to kickoff a crew asynchronously, allowing you to start the crew execution in a non-blocking manner. This feature is particularly useful when you want to run multiple crews concurrently or when you need to perform other tasks while the crew is executing.
## Asynchronous Crew Execution ## Asynchronous Crew Execution
To kickoff a crew asynchronously, use the `kickoff_async()` method. This method initiates the crew execution in a separate thread, allowing the main thread to continue executing other tasks. To kickoff a crew asynchronously, use the `kickoff_async()` method. This method initiates the crew execution in a separate thread, allowing the main thread to continue executing other tasks.
### Method Signature Here's an example of how to kickoff a crew asynchronously:
```python ```python
def kickoff_async(self, inputs: dict) -> CrewOutput:
```
### Parameters
- `inputs` (dict): A dictionary containing the input data required for the tasks.
### Returns
- `CrewOutput`: An object representing the result of the crew execution.
## Potential Use Cases
- **Parallel Content Generation**: Kickoff multiple independent crews asynchronously, each responsible for generating content on different topics. For example, one crew might research and draft an article on AI trends, while another crew generates social media posts about a new product launch. Each crew operates independently, allowing content production to scale efficiently.
- **Concurrent Market Research Tasks**: Launch multiple crews asynchronously to conduct market research in parallel. One crew might analyze industry trends, while another examines competitor strategies, and yet another evaluates consumer sentiment. Each crew independently completes its task, enabling faster and more comprehensive insights.
- **Independent Travel Planning Modules**: Execute separate crews to independently plan different aspects of a trip. One crew might handle flight options, another handles accommodation, and a third plans activities. Each crew works asynchronously, allowing various components of the trip to be planned simultaneously and independently for faster results.
## Example: Single Asynchronous Crew Execution
Here's an example of how to kickoff a crew asynchronously using asyncio and awaiting the result:
```python
import asyncio
from crewai import Crew, Agent, Task from crewai import Crew, Agent, Task
# Create an agent with code execution enabled # Create an agent with code execution enabled
@@ -61,57 +34,7 @@ analysis_crew = Crew(
tasks=[data_analysis_task] tasks=[data_analysis_task]
) )
# Async function to kickoff the crew asynchronously # Execute the crew
async def async_crew_execution(): result = analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
result = await analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
print("Crew Result:", result)
# Run the async function
asyncio.run(async_crew_execution())
``` ```
## Example: Multiple Asynchronous Crew Executions
In this example, we'll show how to kickoff multiple crews asynchronously and wait for all of them to complete using `asyncio.gather()`:
```python
import asyncio
from crewai import Crew, Agent, Task
# Create an agent with code execution enabled
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True
)
# Create tasks that require code execution
task_1 = Task(
description="Analyze the first dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent
)
task_2 = Task(
description="Analyze the second dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent
)
# Create two crews and add tasks
crew_1 = Crew(agents=[coding_agent], tasks=[task_1])
crew_2 = Crew(agents=[coding_agent], tasks=[task_2])
# Async function to kickoff multiple crews asynchronously and wait for all to finish
async def async_multiple_crews():
result_1 = crew_1.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
result_2 = crew_2.kickoff_async(inputs={"ages": [20, 22, 24, 28, 30]})
# Wait for both crews to finish
results = await asyncio.gather(result_1, result_2)
for i, result in enumerate(results, 1):
print(f"Crew {i} Result:", result)
# Run the async function
asyncio.run(async_multiple_crews())
```

View File

@@ -25,17 +25,13 @@ coding_agent = Agent(
# Create a task that requires code execution # Create a task that requires code execution
data_analysis_task = Task( data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}", description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent, agent=coding_agent
expected_output="The average age calculated from the dataset"
) )
# Create a crew and add the task # Create a crew and add the task
analysis_crew = Crew( analysis_crew = Crew(
agents=[coding_agent], agents=[coding_agent],
tasks=[data_analysis_task], tasks=[data_analysis_task]
verbose=True,
memory=False,
respect_context_window=True # enable by default
) )
datasets = [ datasets = [
@@ -46,4 +42,4 @@ datasets = [
# Execute the crew # Execute the crew
result = analysis_crew.kickoff_for_each(inputs=datasets) result = analysis_crew.kickoff_for_each(inputs=datasets)
``` ```

View File

@@ -1,163 +1,221 @@
--- ---
title: Connect CrewAI to LLMs title: Connect CrewAI to LLMs
description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs) using LiteLLM, including supported providers and configuration options. description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs), including detailed class attributes, methods, and configuration options.
--- ---
## Connect CrewAI to LLMs ## Connect CrewAI to LLMs
CrewAI uses LiteLLM to connect to a wide variety of Language Models (LLMs). This integration provides extensive versatility, allowing you to use models from numerous providers with a simple, unified interface.
!!! note "Default LLM" !!! note "Default LLM"
By default, CrewAI uses the `gpt-4o-mini` model. This is determined by the `OPENAI_MODEL_NAME` environment variable, which defaults to "gpt-4o-mini" if not set. You can easily configure your agents to use a different model or provider as described in this guide. By default, CrewAI uses OpenAI's GPT-4 model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4o") for language processing. You can configure your agents to use a different model or API as described in this guide.
## Supported Providers CrewAI offers flexibility in connecting to various LLMs, including local models via [Ollama](https://ollama.ai) and different APIs like Azure. It's compatible with all [LangChain LLM](https://python.langchain.com/docs/integrations/llms/) components, enabling diverse integrations for tailored AI solutions.
LiteLLM supports a wide range of providers, including but not limited to: ## CrewAI Agent Overview
- OpenAI The `Agent` class is the cornerstone for implementing AI solutions in CrewAI. Here's a comprehensive overview of the Agent class attributes and methods:
- Anthropic
- Google (Vertex AI, Gemini)
- Azure OpenAI
- AWS (Bedrock, SageMaker)
- Cohere
- Hugging Face
- Ollama
- Mistral AI
- Replicate
- Together AI
- AI21
- Cloudflare Workers AI
- DeepInfra
- Groq
- And many more!
For a complete and up-to-date list of supported providers, please refer to the [LiteLLM Providers documentation](https://docs.litellm.ai/docs/providers). - **Attributes**:
- `role`: Defines the agent's role within the solution.
## Changing the LLM - `goal`: Specifies the agent's objective.
- `backstory`: Provides a background story to the agent.
To use a different LLM with your CrewAI agents, you have several options: - `cache` *Optional*: Determines whether the agent should use a cache for tool usage. Default is `True`.
- `max_rpm` *Optional*: Maximum number of requests per minute the agent's execution should respect. Optional.
### 1. Using a String Identifier - `verbose` *Optional*: Enables detailed logging of the agent's execution. Default is `False`.
- `allow_delegation` *Optional*: Allows the agent to delegate tasks to other agents, default is `True`.
Pass the model name as a string when initializing the agent: - `tools`: Specifies the tools available to the agent for task execution. Optional.
- `max_iter` *Optional*: Maximum number of iterations for an agent to execute a task, default is 25.
- `max_execution_time` *Optional*: Maximum execution time for an agent to execute a task. Optional.
- `step_callback` *Optional*: Provides a callback function to be executed after each step. Optional.
- `llm` *Optional*: Indicates the Large Language Model the agent uses. By default, it uses the GPT-4 model defined in the environment variable "OPENAI_MODEL_NAME".
- `function_calling_llm` *Optional* : Will turn the ReAct CrewAI agent into a function-calling agent.
- `callbacks` *Optional*: A list of callback functions from the LangChain library that are triggered during the agent's execution process.
- `system_template` *Optional*: Optional string to define the system format for the agent.
- `prompt_template` *Optional*: Optional string to define the prompt format for the agent.
- `response_template` *Optional*: Optional string to define the response format for the agent.
```python ```python
from crewai import Agent # Required
os.environ["OPENAI_MODEL_NAME"]="gpt-4-0125-preview"
# Using OpenAI's GPT-4 # Agent will automatically use the model defined in the environment variable
openai_agent = Agent( example_agent = Agent(
role='OpenAI Expert', role='Local Expert',
goal='Provide insights using GPT-4', goal='Provide insights about the city',
backstory="An AI assistant powered by OpenAI's latest model.", backstory="A knowledgeable local guide.",
llm='gpt-4' verbose=True
)
# Using Anthropic's Claude
claude_agent = Agent(
role='Anthropic Expert',
goal='Analyze data using Claude',
backstory="An AI assistant leveraging Anthropic's language model.",
llm='claude-2'
) )
``` ```
### 2. Using the LLM Class ## Ollama Integration
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, set the appropriate environment variables as shown below.
For more detailed configuration, use the LLM class: ### Setting Up Ollama
- **Environment Variables Configuration**: To integrate Ollama, set the following environment variables:
```sh
OPENAI_API_BASE='http://localhost:11434'
OPENAI_MODEL_NAME='llama2' # Adjust based on available model
OPENAI_API_KEY=''
```
## Ollama Integration (ex. for using Llama 2 locally)
1. [Download Ollama](https://ollama.com/download).
2. After setting up the Ollama, Pull the Llama2 by typing following lines into the terminal ```ollama pull llama2```.
3. Enjoy your free Llama2 model that powered up by excellent agents from crewai.
```
from crewai import Agent, Task, Crew
from langchain.llms import Ollama
import os
os.environ["OPENAI_API_KEY"] = "NA"
llm = Ollama(
model = "llama2",
base_url = "http://localhost:11434")
general_agent = Agent(role = "Math Professor",
goal = """Provide the solution to the students that are asking mathematical questions and give them the answer.""",
backstory = """You are an excellent math professor that likes to solve math questions in a way that everyone can understand your solution""",
allow_delegation = False,
verbose = True,
llm = llm)
task = Task(description="""what is 3 + 5""",
agent = general_agent,
expected_output="A numerical answer.")
crew = Crew(
agents=[general_agent],
tasks=[task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## HuggingFace Integration
There are a couple of different ways you can use HuggingFace to host your LLM.
### Your own HuggingFace endpoint
```python ```python
from crewai import Agent, LLM from langchain_community.llms import HuggingFaceEndpoint
llm = LLM( llm = HuggingFaceEndpoint(
model="gpt-4", endpoint_url="<YOUR_ENDPOINT_URL_HERE>",
temperature=0.7, huggingfacehub_api_token="<HF_TOKEN_HERE>",
base_url="https://api.openai.com/v1", task="text-generation",
api_key="your-api-key-here" max_new_tokens=512
) )
agent = Agent( agent = Agent(
role='Customized LLM Expert', role="HuggingFace Agent",
goal='Provide tailored responses', goal="Generate text using HuggingFace",
backstory="An AI assistant with custom LLM settings.", backstory="A diligent explorer of GitHub docs.",
llm=llm llm=llm
) )
``` ```
## Configuration Options ### From HuggingFaceHub endpoint
When configuring an LLM for your agent, you have access to a wide range of parameters:
| Parameter | Type | Description |
|-----------|------|-------------|
| `model` | str | The name of the model to use (e.g., "gpt-4", "claude-2") |
| `temperature` | float | Controls randomness in output (0.0 to 1.0) |
| `max_tokens` | int | Maximum number of tokens to generate |
| `top_p` | float | Controls diversity of output (0.0 to 1.0) |
| `frequency_penalty` | float | Penalizes new tokens based on their frequency in the text so far |
| `presence_penalty` | float | Penalizes new tokens based on their presence in the text so far |
| `stop` | str, List[str] | Sequence(s) to stop generation |
| `base_url` | str | The base URL for the API endpoint |
| `api_key` | str | Your API key for authentication |
For a complete list of parameters and their descriptions, refer to the LLM class documentation.
## Connecting to OpenAI-Compatible LLMs
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
### Using Environment Variables
```python ```python
import os from langchain_community.llms import HuggingFaceHub
os.environ["OPENAI_API_KEY"] = "your-api-key" llm = HuggingFaceHub(
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1" repo_id="HuggingFaceH4/zephyr-7b-beta",
os.environ["OPENAI_MODEL_NAME"] = "your-model-name" huggingfacehub_api_token="<HF_TOKEN_HERE>",
``` task="text-generation",
### Using LLM Class Attributes
```python
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
```
## Using Local Models with Ollama
For local models like those provided by Ollama:
1. [Download and install Ollama](https://ollama.com/download)
2. Pull the desired model (e.g., `ollama pull llama2`)
3. Configure your agent:
```python
agent = Agent(
role='Local AI Expert',
goal='Process information using a local model',
backstory="An AI assistant running on local hardware.",
llm=LLM(model="ollama/llama2", base_url="http://localhost:11434")
) )
``` ```
## Changing the Base API URL ## OpenAI Compatible API Endpoints
Switch between APIs and models seamlessly using environment variables, supporting platforms like FastChat, LM Studio, Groq, and Mistral AI.
You can change the base API URL for any LLM provider by setting the `base_url` parameter: ### Configuration Examples
#### FastChat
```python ```sh
llm = LLM( OPENAI_API_BASE="http://localhost:8001/v1"
model="custom-model-name", OPENAI_MODEL_NAME='oh-2.5m7b-q51'
base_url="https://api.your-provider.com/v1", OPENAI_API_KEY=NA
api_key="your-api-key"
)
agent = Agent(llm=llm, ...)
``` ```
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider. #### LM Studio
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
```sh
OPENAI_API_BASE="http://localhost:1234/v1"
OPENAI_API_KEY="lm-studio"
```
#### Groq API
```sh
OPENAI_API_KEY=your-groq-api-key
OPENAI_MODEL_NAME='llama3-8b-8192'
OPENAI_API_BASE=https://api.groq.com/openai/v1
```
#### Mistral API
```sh
OPENAI_API_KEY=your-mistral-api-key
OPENAI_API_BASE=https://api.mistral.ai/v1
OPENAI_MODEL_NAME="mistral-small"
```
### Solar
```python
from langchain_community.chat_models.solar import SolarChat
# Initialize language model
os.environ["SOLAR_API_KEY"] = "your-solar-api-key"
llm = SolarChat(max_tokens=1024)
# Free developer API key available here: https://console.upstage.ai/services/solar
# Langchain Example: https://github.com/langchain-ai/langchain/pull/18556
```
### text-gen-web-ui
```sh
OPENAI_API_BASE=http://localhost:5000/v1
OPENAI_MODEL_NAME=NA
OPENAI_API_KEY=NA
```
### Cohere
```python
from langchain_cohere import ChatCohere
# Initialize language model
os.environ["COHERE_API_KEY"] = "your-cohere-api-key"
llm = ChatCohere()
# Free developer API key available here: https://cohere.com/
# Langchain Documentation: https://python.langchain.com/docs/integrations/chat/cohere
```
### Azure Open AI Configuration
For Azure OpenAI API integration, set the following environment variables:
```sh
AZURE_OPENAI_VERSION="2022-12-01"
AZURE_OPENAI_DEPLOYMENT=""
AZURE_OPENAI_ENDPOINT=""
AZURE_OPENAI_KEY=""
```
### Example Agent with Azure LLM
```python
from dotenv import load_dotenv
from crewai import Agent
from langchain_openai import AzureChatOpenAI
load_dotenv()
azure_llm = AzureChatOpenAI(
azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
api_key=os.environ.get("AZURE_OPENAI_KEY")
)
azure_agent = Agent(
role='Example Agent',
goal='Demonstrate custom LLM configuration',
backstory='A diligent explorer of GitHub docs.',
llm=azure_llm
)
```
## Conclusion ## Conclusion
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.

View File

@@ -7,14 +7,10 @@ description: How to monitor cost, latency, and performance of CrewAI Agents usin
Langtrace is an open-source, external tool that helps you set up observability and evaluations for Large Language Models (LLMs), LLM frameworks, and Vector Databases. While not built directly into CrewAI, Langtrace can be used alongside CrewAI to gain deep visibility into the cost, latency, and performance of your CrewAI Agents. This integration allows you to log hyperparameters, monitor performance regressions, and establish a process for continuous improvement of your Agents. Langtrace is an open-source, external tool that helps you set up observability and evaluations for Large Language Models (LLMs), LLM frameworks, and Vector Databases. While not built directly into CrewAI, Langtrace can be used alongside CrewAI to gain deep visibility into the cost, latency, and performance of your CrewAI Agents. This integration allows you to log hyperparameters, monitor performance regressions, and establish a process for continuous improvement of your Agents.
![Overview of a select series of agent session runs](..%2Fassets%2Flangtrace1.png)
![Overview of agent traces](..%2Fassets%2Flangtrace2.png)
![Overview of llm traces in details](..%2Fassets%2Flangtrace3.png)
## Setup Instructions ## Setup Instructions
1. Sign up for [Langtrace](https://langtrace.ai/) by visiting [https://langtrace.ai/signup](https://langtrace.ai/signup). 1. Sign up for [Langtrace](https://langtrace.ai/) by visiting [https://langtrace.ai/signup](https://langtrace.ai/signup).
2. Create a project, set the project type to crewAI & generate an API key. 2. Create a project and generate an API key.
3. Install Langtrace in your CrewAI project using the following commands: 3. Install Langtrace in your CrewAI project using the following commands:
```bash ```bash
@@ -36,29 +32,58 @@ langtrace.init(api_key='<LANGTRACE_API_KEY>')
from crewai import Agent, Task, Crew from crewai import Agent, Task, Crew
``` ```
2. Create your CrewAI agents and tasks as usual.
3. Use Langtrace's tracking functions to monitor your CrewAI operations. For example:
```python
with langtrace.trace("CrewAI Task Execution"):
result = crew.kickoff()
```
### Features and Their Application to CrewAI ### Features and Their Application to CrewAI
1. **LLM Token and Cost Tracking** 1. **LLM Token and Cost Tracking**
- Monitor the token usage and associated costs for each CrewAI agent interaction. - Monitor the token usage and associated costs for each CrewAI agent interaction.
- Example:
```python
with langtrace.trace("Agent Interaction"):
agent_response = agent.execute(task)
```
2. **Trace Graph for Execution Steps** 2. **Trace Graph for Execution Steps**
- Visualize the execution flow of your CrewAI tasks, including latency and logs. - Visualize the execution flow of your CrewAI tasks, including latency and logs.
- Useful for identifying bottlenecks in your agent workflows. - Useful for identifying bottlenecks in your agent workflows.
3. **Dataset Curation with Manual Annotation** 3. **Dataset Curation with Manual Annotation**
- Create datasets from your CrewAI task outputs for future training or evaluation. - Create datasets from your CrewAI task outputs for future training or evaluation.
- Example:
```python
langtrace.log_dataset_item(task_input, agent_output, {"task_type": "research"})
```
4. **Prompt Versioning and Management** 4. **Prompt Versioning and Management**
- Keep track of different versions of prompts used in your CrewAI agents. - Keep track of different versions of prompts used in your CrewAI agents.
- Useful for A/B testing and optimizing agent performance. - Useful for A/B testing and optimizing agent performance.
5. **Prompt Playground with Model Comparisons** 5. **Prompt Playground with Model Comparisons**
- Test and compare different prompts and models for your CrewAI agents before deployment. - Test and compare different prompts and models for your CrewAI agents before deployment.
6. **Testing and Evaluations** 6. **Testing and Evaluations**
- Set up automated tests for your CrewAI agents and tasks. - Set up automated tests for your CrewAI agents and tasks.
- Example:
```python
langtrace.evaluate(agent_output, expected_output, "accuracy")
```
## Monitoring New CrewAI Features
CrewAI has introduced several new features that can be monitored using Langtrace:
1. **Code Execution**: Monitor the performance and output of code executed by agents.
```python
with langtrace.trace("Agent Code Execution"):
code_output = agent.execute_code(code_snippet)
```
2. **Third-party Agent Integration**: Track interactions with LlamaIndex, LangChain, and Autogen agents.

View File

@@ -1,7 +1,6 @@
--- ---
title: Replay Tasks from Latest Crew Kickoff title: Replay Tasks from Latest Crew Kickoff
description: Replay tasks from the latest crew.kickoff(...) description: Replay tasks from the latest crew.kickoff(...)
--- ---
## Introduction ## Introduction
@@ -12,47 +11,39 @@ You must run `crew.kickoff()` before you can replay a task. Currently, only the
Here's an example of how to replay from a task: Here's an example of how to replay from a task:
### Replaying from Specific Task Using the CLI ### Replaying from specific task Using the CLI
To use the replay feature, follow these steps: To use the replay feature, follow these steps:
1. Open your terminal or command prompt. 1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located. 2. Navigate to the directory where your CrewAI project is located.
3. Run the following commands: 3. Run the following command:
To view the latest kickoff task_ids use: To view latest kickoff task_ids use:
```shell ```shell
crewai log-tasks-outputs crewai log-tasks-outputs
``` ```
Once you have your `task_id` to replay, use: Once you have your task_id to replay from use:
```shell ```shell
crewai replay -t <task_id> crewai replay -t <task_id>
``` ```
**Note:** Ensure `crewai` is installed and configured correctly in your development environment.
### Replaying from a Task Programmatically ### Replaying from a task Programmatically
To replay from a task programmatically, use the following steps: To replay from a task programmatically, use the following steps:
1. Specify the `task_id` and input parameters for the replay process. 1. Specify the task_id and input parameters for the replay process.
2. Execute the replay command within a try-except block to handle potential errors. 2. Execute the replay command within a try-except block to handle potential errors.
```python ```python
def replay(): def replay_from_task():
""" """
Replay the crew execution from a specific task. Replay the crew execution from a specific task.
""" """
task_id = '<task_id>' task_id = '<task_id>'
inputs = {"topic": "CrewAI Training"} # This is optional; you can pass in the inputs you want to replay; otherwise, it uses the previous kickoff's inputs. inputs = {"topic": "CrewAI Training"} # this is optional, you can pass in the inputs you want to replay otherwise uses the previous kickoffs inputs
try: try:
YourCrewName_Crew().crew().replay(task_id=task_id, inputs=inputs) YourCrewName_Crew().crew().replay_from_task(task_id=task_id, inputs=inputs)
except subprocess.CalledProcessError as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
except Exception as e: except Exception as e:
raise Exception(f"An unexpected error occurred: {e}") raise Exception(f"An error occurred while replaying the crew: {e}")
```
## Conclusion
With the above enhancements and detailed functionality, replaying specific tasks in CrewAI has been made more efficient and robust. Ensure you follow the commands and steps precisely to make the most of these features.

View File

@@ -18,7 +18,7 @@ The sequential process ensures tasks are executed one after the other, following
To use the sequential process, assemble your crew and define tasks in the order they need to be executed. To use the sequential process, assemble your crew and define tasks in the order they need to be executed.
```python ```python
from crewai import Crew, Process, Agent, Task, TaskOutput, CrewOutput from crewai import Crew, Process, Agent, Task
# Define your agents # Define your agents
researcher = Agent( researcher = Agent(
@@ -37,7 +37,6 @@ writer = Agent(
backstory='A skilled writer with a talent for crafting compelling narratives' backstory='A skilled writer with a talent for crafting compelling narratives'
) )
# Define your tasks
research_task = Task(description='Gather relevant data...', agent=researcher, expected_output='Raw Data') research_task = Task(description='Gather relevant data...', agent=researcher, expected_output='Raw Data')
analysis_task = Task(description='Analyze the data...', agent=analyst, expected_output='Data Insights') analysis_task = Task(description='Analyze the data...', agent=analyst, expected_output='Data Insights')
writing_task = Task(description='Compose the report...', agent=writer, expected_output='Final Report') writing_task = Task(description='Compose the report...', agent=writer, expected_output='Final Report')
@@ -51,18 +50,11 @@ report_crew = Crew(
# Execute the crew # Execute the crew
result = report_crew.kickoff() result = report_crew.kickoff()
# Accessing the type-safe output
task_output: TaskOutput = result.tasks[0].output
crew_output: CrewOutput = result.output
``` ```
### Note:
Each task in a sequential process **must** have an agent assigned. Ensure that every `Task` includes an `agent` parameter.
### Workflow in Action ### Workflow in Action
1. **Initial Task**: In a sequential process, the first agent completes their task and signals completion. 1. **Initial Task**: In a sequential process, the first agent completes their task and signals completion.
2. **Subsequent Tasks**: Agents pick up their tasks based on the process type, with outcomes of preceding tasks or directives guiding their execution. 2. **Subsequent Tasks**: Agents pick up their tasks based on the process type, with outcomes of preceding tasks or manager directives guiding their execution.
3. **Completion**: The process concludes once the final task is executed, leading to project completion. 3. **Completion**: The process concludes once the final task is executed, leading to project completion.
## Advanced Features ## Advanced Features
@@ -90,6 +82,4 @@ CrewAI tracks token usage across all tasks and agents. You can access these metr
1. **Order Matters**: Arrange tasks in a logical sequence where each task builds upon the previous one. 1. **Order Matters**: Arrange tasks in a logical sequence where each task builds upon the previous one.
2. **Clear Task Descriptions**: Provide detailed descriptions for each task to guide the agents effectively. 2. **Clear Task Descriptions**: Provide detailed descriptions for each task to guide the agents effectively.
3. **Appropriate Agent Selection**: Match agents' skills and roles to the requirements of each task. 3. **Appropriate Agent Selection**: Match agents' skills and roles to the requirements of each task.
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones. 4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones
This updated documentation ensures that details accurately reflect the latest changes in the codebase and clearly describes how to leverage new features and configurations. The content is kept simple and direct to ensure easy understanding.

View File

@@ -1,7 +1,5 @@
--- ---
title: Starting a New CrewAI Project
title: Starting a New CrewAI Project - Using Template
description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods. description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods.
--- ---
@@ -9,27 +7,16 @@ description: A comprehensive guide to starting a new CrewAI project, including t
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started. Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
Before we start, there are a couple of things to note:
1. CrewAI is a Python package and requires Python >=3.10 and <=3.13 to run.
2. The preferred way of setting up CrewAI is using the `crewai create crew` command. This will create a new project folder and install a skeleton template for you to work on.
## Prerequisites ## Prerequisites
Before getting started with CrewAI, make sure that you have installed it via pip: We assume you have already installed CrewAI. If not, please refer to the [installation guide](how-to/Installing-CrewAI.md) to install CrewAI and its dependencies.
```shell
$ pip install 'crewai[tools]'
```
## Creating a New Project ## Creating a New Project
In this example, we will be using poetry as our virtual environment manager. To create a new project, run the following CLI command:
To create a new CrewAI project, run the following CLI command:
```shell ```shell
$ crewai create crew <project_name> $ crewai create my_project
``` ```
This command will create a new project folder with the following structure: This command will create a new project folder with the following structure:
@@ -92,73 +79,6 @@ research_candidates_task:
{job_requirements} {job_requirements}
expected_output: > expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability. A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE crew.py FILE
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE crew.py FILE
- researcher
```
### Referencing Variables:
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from `tasks.yaml` file. Ensure your annotated agent and function name are the same; otherwise, your task won't recognize the reference properly.
#### Example References
`agents.yaml`
```yaml
email_summarizer:
role: >
Email Summarizer
goal: >
Summarize emails into a concise and clear summary
backstory: >
You will create a 5 bullet point summary of the report
llm: mixtal_llm
```
`tasks.yaml`
```yaml
email_summarizer_task:
description: >
Summarize the email into a 5 bullet point summary
expected_output: >
A 5 bullet point summary of the email
agent: email_summarizer
context:
- reporting_task
- research_task
```
Use the annotations to properly reference the agent and task in the `crew.py` file.
### Annotations include:
* `@agent`
* `@task`
* `@crew`
* `@tool`
* `@callback`
* `@output_json`
* `@output_pydantic`
* `@cache_handler`
`crew.py`
```python
# ...
@agent
def email_summarizer(self) -> Agent:
return Agent(
config=self.agents_config["email_summarizer"],
)
@task
def email_summarizer_task(self) -> Task:
return Task(
config=self.tasks_config["email_summarizer_task"],
)
# ...
``` ```
## Installing Dependencies ## Installing Dependencies
@@ -167,7 +87,8 @@ To install the dependencies for your project, you can use Poetry. First, navigat
```shell ```shell
$ cd my_project $ cd my_project
$ crewai install $ poetry lock
$ poetry install
``` ```
This will install the dependencies specified in the `pyproject.toml` file. This will install the dependencies specified in the `pyproject.toml` file.
@@ -176,7 +97,7 @@ This will install the dependencies specified in the `pyproject.toml` file.
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file. Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file.
#### tasks.yaml #### agents.yaml
```yaml ```yaml
research_task: research_task:
@@ -206,31 +127,11 @@ def run():
To run your project, use the following command: To run your project, use the following command:
```shell ```shell
$ crewai run $ poetry run my_project
``` ```
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file. This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
### Replay Tasks from Latest Crew Kickoff
CrewAI now includes a replay feature that allows you to list the tasks from the last run and replay from a specific one. To use this feature, run:
```shell
$ crewai replay <task_id>
```
Replace `<task_id>` with the ID of the task you want to replay.
### Reset Crew Memory
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
```shell
$ crewai reset-memory
```
This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project ## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks. The easiest way to deploy your crew is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.

View File

@@ -5,26 +5,6 @@
Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks. Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
<div style="display:flex; margin:0 auto; justify-content: center;"> <div style="display:flex; margin:0 auto; justify-content: center;">
<div style="width:25%">
<h2>Getting Started</h2>
<ul>
<li>
<a href='./getting-started/Installing-CrewAI'>
Installing CrewAI
</a>
</li>
<li>
<a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
Start a New CrewAI Project: Template Method
</a>
</li>
<li>
<a href='./getting-started/Create-a-New-CrewAI-Pipeline-Template-Method'>
Create a New CrewAI Pipeline: Template Method
</a>
</li>
</ul>
</div>
<div style="width:25%"> <div style="width:25%">
<h2>Core Concepts</h2> <h2>Core Concepts</h2>
<ul> <ul>
@@ -53,21 +33,6 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Crews Crews
</a> </a>
</li> </li>
<li>
<a href="./core-concepts/LLMs">
LLMs
</a>
</li>
<!-- <li>
<a href="./core-concepts/Flows">
Flows
</a>
</li> -->
<li>
<a href="./core-concepts/Pipeline">
Pipeline
</a>
</li>
<li> <li>
<a href="./core-concepts/Training-Crew"> <a href="./core-concepts/Training-Crew">
Training Training
@@ -78,21 +43,26 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Memory Memory
</a> </a>
</li> </li>
<li>
<a href="./core-concepts/Planning">
Planning
</a>
</li>
<li>
<a href="./core-concepts/Testing">
Testing
</a>
</li>
</ul> </ul>
</div> </div>
<div style="width:25%"> <div style="width:30%">
<h2>How-To Guides</h2> <h2>How-To Guides</h2>
<ul> <ul>
<li>
<a href="./how-to/Start-a-New-CrewAI-Project">
Starting Your crewAI Project
</a>
</li>
<li>
<a href="./how-to/Installing-CrewAI">
Installing crewAI
</a>
</li>
<li>
<a href="./how-to/Creating-a-Crew-and-kick-it-off">
Getting Started
</a>
</li>
<li> <li>
<a href="./how-to/Create-Custom-Tools"> <a href="./how-to/Create-Custom-Tools">
Create Custom Tools Create Custom Tools
@@ -148,11 +118,6 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Replay from a Task Replay from a Task
</a> </a>
</li> </li>
<li>
<a href="./how-to/Conditional-Tasks">
Conditional Tasks
</a>
</li>
<li> <li>
<a href="./how-to/AgentOps-Observability"> <a href="./how-to/AgentOps-Observability">
Agent Monitoring with AgentOps Agent Monitoring with AgentOps
@@ -165,7 +130,7 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
</li> </li>
</ul> </ul>
</div> </div>
<!-- <div style="width:25%"> <div style="width:30%">
<h2>Examples</h2> <h2>Examples</h2>
<ul> <ul>
<li> <li>
@@ -203,26 +168,6 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
Landing Page Generator Landing Page Generator
</a> </a>
</li> </li>
<li>
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/email_auto_responder_flow">
Email Auto Responder Flow
</a>
</li>
<li>
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/lead-score-flow">
Lead Score Flow
</a>
</li>
<li>
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/write_a_book_with_flows">
Write a Book Flow
</a>
</li>
<li>
<a target='_blank' href="https://github.com/crewAIInc/crewAI-examples/tree/main/meeting_assistant_flow">
Meeting Assistant Flow
</a>
</li>
</ul> </ul>
</div> --> </div>
</div> </div>

View File

@@ -5,39 +5,24 @@ description: Understanding the telemetry data collected by CrewAI and how it con
## Telemetry ## Telemetry
!!! note "Personal Information"
By default, we collect no data that would be considered personal information under GDPR and other privacy regulations.
We do collect Tool's names and Agent's roles, so be advised not to include any personal information in the tool's names or the Agent's roles.
Because no personal information is collected, it's not necessary to worry about data residency.
When `share_crew` is enabled, additional data is collected which may contain personal information if included by the user. Users should exercise caution when enabling this feature to ensure compliance with privacy regulations.
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users. CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users.
It's pivotal to understand that by default, **NO personal data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables. It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy.
When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights. This expanded data collection may include personal information if users have incorporated it into their crews or tasks. Users should carefully consider the content of their crews and tasks before enabling `share_crew`. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
### Data Explanation: ### Data Collected Includes:
| Defaulted | Data | Reason and Specifics | - **Version of CrewAI**: Assessing the adoption rate of our latest version helps us understand user needs and guide our updates.
|-----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------| - **Python Version**: Identifying the Python versions our users operate with assists in prioritizing our support efforts for these versions.
| Yes | CrewAI and Python Version | Tracks software versions. Example: CrewAI v1.2.3, Python 3.8.10. No personal data. | - **General OS Information**: Details like the number of CPUs and the operating system type (macOS, Windows, Linux) enable us to focus our development on the most used operating systems and explore the potential for OS-specific features.
| Yes | Crew Metadata | Includes: randomly generated key and ID, process type (e.g., 'sequential', 'parallel'), boolean flag for memory usage (true/false), count of tasks, count of agents. All non-personal. | - **Number of Agents and Tasks in a Crew**: Ensures our internal testing mirrors real-world scenarios, helping us guide users towards best practices.
| Yes | Agent Data | Includes: randomly generated key and ID, role name (should not include personal info), boolean settings (verbose, delegation enabled, code execution allowed), max iterations, max RPM, max retry limit, LLM info (see LLM Attributes), list of tool names (should not include personal info). No personal data. | - **Crew Process Utilization**: Understanding how crews are utilized aids in directing our development focus.
| Yes | Task Metadata | Includes: randomly generated key and ID, boolean execution settings (async_execution, human_input), associated agent's role and key, list of tool names. All non-personal. | - **Memory and Delegation Use by Agents**: Insights into how these features are used help evaluate their effectiveness and future.
| Yes | Tool Usage Statistics | Includes: tool name (should not include personal info), number of usage attempts (integer), LLM attributes used. No personal data. | - **Task Execution Mode**: Knowing whether tasks are executed in parallel or sequentially influences our emphasis on enhancing parallel execution capabilities.
| Yes | Test Execution Data | Includes: crew's randomly generated key and ID, number of iterations, model name used, quality score (float), execution time (in seconds). All non-personal. | - **Language Model Utilization**: Supports our goal to improve support for the most popular languages among our users.
| Yes | Task Lifecycle Data | Includes: creation and execution start/end times, crew and task identifiers. Stored as spans with timestamps. No personal data. | - **Roles of Agents within a Crew**: Understanding the various roles agents play aids in crafting better tools, integrations, and examples.
| Yes | LLM Attributes | Includes: name, model_name, model, top_k, temperature, and class name of the LLM. All technical, non-personal data. | - **Tool Usage**: Identifying which tools are most frequently used allows us to prioritize improvements in those areas.
| Yes | Crew Deployment attempt using crewAI CLI | Includes: The fact a deploy is being made and crew id, and if it's trying to pull logs, no other data. |
| No | Agent's Expanded Data | Includes: goal description, backstory text, i18n prompt file identifier. Users should ensure no personal info is included in text fields. |
| No | Detailed Task Information | Includes: task description, expected output description, context references. Users should ensure no personal info is included in these fields. |
| No | Environment Information | Includes: platform, release, system, version, and CPU count. Example: 'Windows 10', 'x86_64'. No personal data. |
| No | Crew and Task Inputs and Outputs | Includes: input parameters and output results as non-identifiable data. Users should ensure no personal info is included. |
| No | Comprehensive Crew Execution Data | Includes: detailed logs of crew operations, all agents and tasks data, final output. All non-personal and technical in nature. |
Note: "No" in the "Defaulted" column indicates that this data is only collected when `share_crew` is set to `true`.
### Opt-In Further Telemetry Sharing ### Opt-In Further Telemetry Sharing
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns. Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. This opt-in approach respects user privacy and aligns with data protection standards by ensuring users have control over their data sharing preferences. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
!!! warning "Potential Personal Information" ### Updates and Revisions
If you enable `share_crew`, the collected data may include personal information if it has been incorporated into crew configurations, task descriptions, or outputs. Users should carefully review their data and ensure compliance with GDPR and other applicable privacy regulations before enabling this feature. We are committed to maintaining the accuracy and transparency of our documentation. Regular reviews and updates are performed to ensure our documentation accurately reflects the latest developments of our codebase and telemetry practices. Users are encouraged to review this section for the most current information on our data collection practices and how they contribute to the improvement of CrewAI.

View File

@@ -1,9 +1,9 @@
# CodeInterpreterTool # CodeInterpreterTool
## Description ## Description
This tool enables the Agent to execute Python 3 code that it has generated autonomously. The code is run in a secure, isolated environment, ensuring safety regardless of the content. This tool is used to give the Agent the ability to run code (Python3) from the code generated by the Agent itself. The code is executed in a sandboxed environment, so it is safe to run any code.
This functionality is particularly valuable as it allows the Agent to create code, execute it within the same ecosystem, obtain the results, and utilize that information to inform subsequent decisions and actions. It is incredible useful since it allows the Agent to generate code, run it in the same environment, get the result and use it to make decisions.
## Requirements ## Requirements

View File

@@ -2,7 +2,7 @@
## Description ## Description
This tools is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the composio SDK. This tools is a wrapper around the composio toolset and gives your agent access to a wide variety of tools from the composio SDK.
## Installation ## Installation
@@ -19,7 +19,7 @@ after the installation is complete, either run `composio login` or export your c
The following example demonstrates how to initialize the tool and execute a github action: The following example demonstrates how to initialize the tool and execute a github action:
1. Initialize Composio tools 1. Initialize toolset
```python ```python
from composio import App from composio import App

View File

@@ -1,41 +0,0 @@
# DALL-E Tool
## Description
This tool is used to give the Agent the ability to generate images using the DALL-E model. It is a transformer-based model that generates images from textual descriptions. This tool allows the Agent to generate images based on the text input provided by the user.
## Installation
Install the crewai_tools package
```shell
pip install 'crewai[tools]'
```
## Example
Remember that when using this tool, the text must be generated by the Agent itself. The text must be a description of the image you want to generate.
```python
from crewai_tools import DallETool
Agent(
...
tools=[DallETool()],
)
```
If needed you can also tweak the parameters of the DALL-E model by passing them as arguments to the `DallETool` class. For example:
```python
from crewai_tools import DallETool
dalle_tool = DallETool(model="dall-e-3",
size="1024x1024",
quality="standard",
n=1)
Agent(
...
tools=[dalle_tool]
)
```
The parameters are based on the `client.images.generate` method from the OpenAI API. For more information on the parameters, please refer to the [OpenAI API documentation](https://platform.openai.com/docs/guides/images/introduction?lang=python).

View File

@@ -1,33 +0,0 @@
# FileWriterTool Documentation
## Description
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files. It is particularly useful in scenarios such as generating reports, saving logs, creating configuration files, and more. This tool supports creating new directories if they don't exist, making it easier to organize your output.
## Installation
Install the crewai_tools package to use the `FileWriterTool` in your projects:
```shell
pip install 'crewai[tools]'
```
## Example
To get started with the `FileWriterTool`:
```python
from crewai_tools import FileWriterTool
# Initialize the tool
file_writer_tool = FileWriterTool()
# Write content to a file in a specified directory
result = file_writer_tool._run('example.txt', 'This is a test content.', 'test_directory')
print(result)
```
## Arguments
- `filename`: The name of the file you want to create or overwrite.
- `content`: The content to write into the file.
- `directory` (optional): The path to the directory where the file will be created. Defaults to the current directory (`.`). If the directory does not exist, it will be created.
## Conclusion
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories. This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is straightforward and efficient.

View File

@@ -1,42 +0,0 @@
# FirecrawlCrawlWebsiteTool
## Description
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
## Installation
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
```
pip install firecrawl-py 'crewai[tools]'
```
## Example
Utilize the FirecrawlScrapeFromWebsiteTool as follows to allow your agent to load websites:
```python
from crewai_tools import FirecrawlCrawlWebsiteTool
tool = FirecrawlCrawlWebsiteTool(url='firecrawl.dev')
```
## Arguments
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
- `url`: The base URL to start crawling from.
- `page_options`: Optional.
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
- `crawler_options`: Optional. Options for controlling the crawling behavior.
- `includes`: Optional. URL patterns to include in the crawl.
- `exclude`: Optional. URL patterns to exclude from the crawl.
- `generateImgAltText`: Optional. Generate alt text for images using LLMs (requires a paid plan).
- `returnOnlyUrls`: Optional. If true, returns only the URLs as a list in the crawl status. Note: the response will be a list of URLs inside the data, not a list of documents.
- `maxDepth`: Optional. Maximum depth to crawl. Depth 1 is the base URL, depth 2 includes the base URL and its direct children, and so on.
- `mode`: Optional. The crawling mode to use. Fast mode crawls 4x faster on websites without a sitemap but may not be as accurate and shouldn't be used on heavily JavaScript-rendered websites.
- `limit`: Optional. Maximum number of pages to crawl.
- `timeout`: Optional. Timeout in milliseconds for the crawling operation.

View File

@@ -1,38 +0,0 @@
# FirecrawlScrapeWebsiteTool
## Description
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
## Installation
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
```
pip install firecrawl-py 'crewai[tools]'
```
## Example
Utilize the FirecrawlScrapeWebsiteTool as follows to allow your agent to load websites:
```python
from crewai_tools import FirecrawlScrapeWebsiteTool
tool = FirecrawlScrapeWebsiteTool(url='firecrawl.dev')
```
## Arguments
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
- `url`: The URL to scrape.
- `page_options`: Optional.
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
- `extractor_options`: Optional. Options for LLM-based extraction of structured information from the page content
- `mode`: The extraction mode to use, currently supports 'llm-extraction'
- `extractionPrompt`: Optional. A prompt describing what information to extract from the page
- `extractionSchema`: Optional. The schema for the data to be extracted
- `timeout`: Optional. Timeout in milliseconds for the request

View File

@@ -1,35 +0,0 @@
# FirecrawlSearchTool
## Description
[Firecrawl](https://firecrawl.dev) is a platform for crawling and convert any website into clean markdown or structured data.
## Installation
- Get an API key from [firecrawl.dev](https://firecrawl.dev) and set it in environment variables (`FIRECRAWL_API_KEY`).
- Install the [Firecrawl SDK](https://github.com/mendableai/firecrawl) along with `crewai[tools]` package:
```
pip install firecrawl-py 'crewai[tools]'
```
## Example
Utilize the FirecrawlSearchTool as follows to allow your agent to load websites:
```python
from crewai_tools import FirecrawlSearchTool
tool = FirecrawlSearchTool(query='what is firecrawl?')
```
## Arguments
- `api_key`: Optional. Specifies Firecrawl API key. Defaults is the `FIRECRAWL_API_KEY` environment variable.
- `query`: The search query string to be used for searching.
- `page_options`: Optional. Options for result formatting.
- `onlyMainContent`: Optional. Only return the main content of the page excluding headers, navs, footers, etc.
- `includeHtml`: Optional. Include the raw HTML content of the page. Will output a html key in the response.
- `fetchPageContent`: Optional. Fetch the full content of the page.
- `search_options`: Optional. Options for controlling the crawling behavior.
- `limit`: Optional. Maximum number of pages to crawl.

View File

@@ -1,56 +0,0 @@
# MySQLSearchTool
## Description
This tool is designed to facilitate semantic searches within MySQL database tables. Leveraging the RAG (Retrieve and Generate) technology, the MySQLSearchTool provides users with an efficient means of querying database table content, specifically tailored for MySQL databases. It simplifies the process of finding relevant data through semantic search queries, making it an invaluable resource for users needing to perform advanced queries on extensive datasets within a MySQL database.
## Installation
To install the `crewai_tools` package and utilize the MySQLSearchTool, execute the following command in your terminal:
```shell
pip install 'crewai[tools]'
```
## Example
Below is an example showcasing how to use the MySQLSearchTool to conduct a semantic search on a table within a MySQL database:
```python
from crewai_tools import MySQLSearchTool
# Initialize the tool with the database URI and the target table name
tool = MySQLSearchTool(db_uri='mysql://user:password@localhost:3306/mydatabase', table_name='employees')
```
## Arguments
The MySQLSearchTool requires the following arguments for its operation:
- `db_uri`: A string representing the URI of the MySQL database to be queried. This argument is mandatory and must include the necessary authentication details and the location of the database.
- `table_name`: A string specifying the name of the table within the database on which the semantic search will be performed. This argument is mandatory.
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python
tool = MySQLSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google",
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -1,74 +0,0 @@
# NL2SQL Tool
## Description
This tool is used to convert natural language to SQL queries. When passsed to the agent it will generate queries and then use them to interact with the database.
This enables multiple workflows like having an Agent to access the database fetch information based on the goal and then use the information to generate a response, report or any other output. Along with that proivdes the ability for the Agent to update the database based on its goal.
**Attention**: Make sure that the Agent has access to a Read-Replica or that is okay for the Agent to run insert/update queries on the database.
## Requirements
- SqlAlchemy
- Any DB compatible library (e.g. psycopg2, mysql-connector-python)
## Installation
Install the crewai_tools package
```shell
pip install 'crewai[tools]'
```
## Usage
In order to use the NL2SQLTool, you need to pass the database URI to the tool. The URI should be in the format `dialect+driver://username:password@host:port/database`.
```python
from crewai_tools import NL2SQLTool
# psycopg2 was installed to run this example with PostgreSQL
nl2sql = NL2SQLTool(db_uri="postgresql://example@localhost:5432/test_db")
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config["researcher"],
allow_delegation=False,
tools=[nl2sql]
)
```
## Example
The primary task goal was:
"Retrieve the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of user in each city and sort the results by the average monthly revenue in descending order"
So the Agent tried to get information from the DB, the first one is wrong so the Agent tries again and gets the correct information and passes to the next agent.
![alt text](https://github.com/crewAIInc/crewAI-tools/blob/main/crewai_tools/tools/nl2sql/images/image-2.png?raw=true)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-3.png)
The second task goal was:
"Review the data and create a detailed report, and then create the table on the database with the fields based on the data provided.
Include information on the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of users in each city and sort the results by the average monthly revenue in descending order."
Now things start to get interesting, the Agent generates the SQL query to not only create the table but also insert the data into the table. And in the end the Agent still returns the final report which is exactly what was in the database.
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-4.png)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-5.png)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-9.png)
![alt text](https://github.com/crewAIInc/crewAI-tools/raw/main/crewai_tools/tools/nl2sql/images/image-7.png)
This is a simple example of how the NL2SQLTool can be used to interact with the database and generate reports based on the data in the database.
The Tool provides endless possibilities on the logic of the Agent and how it can interact with the database.
```
DB -> Agent -> ... -> Agent -> DB
```

View File

@@ -29,69 +29,5 @@ To effectively use the `SerperDevTool`, follow these steps:
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`. 2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool. 3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
## Parameters
The `SerperDevTool` comes with several parameters that will be passed to the API :
- **search_url**: The URL endpoint for the search API. (Default is `https://google.serper.dev/search`)
- **country**: Optional. Specify the country for the search results.
- **location**: Optional. Specify the location for the search results.
- **locale**: Optional. Specify the locale for the search results.
- **n_results**: Number of search results to return. Default is `10`.
The values for `country`, `location`, `locale` and `search_url` can be found on the [Serper Playground](https://serper.dev/playground).
## Example with Parameters
Here is an example demonstrating how to use the tool with additional parameters:
```python
from crewai_tools import SerperDevTool
tool = SerperDevTool(
search_url="https://google.serper.dev/scholar",
n_results=2,
)
print(tool.run(search_query="ChatGPT"))
# Using Tool: Search the internet
# Search results: Title: Role of chat gpt in public health
# Link: https://link.springer.com/article/10.1007/s10439-023-03172-7
# Snippet: … ChatGPT in public health. In this overview, we will examine the potential uses of ChatGPT in
# ---
# Title: Potential use of chat gpt in global warming
# Link: https://link.springer.com/article/10.1007/s10439-023-03171-8
# Snippet: … as ChatGPT, have the potential to play a critical role in advancing our understanding of climate
# ---
```
```python
from crewai_tools import SerperDevTool
tool = SerperDevTool(
country="fr",
locale="fr",
location="Paris, Paris, Ile-de-France, France",
n_results=2,
)
print(tool.run(search_query="Jeux Olympiques"))
# Using Tool: Search the internet
# Search results: Title: Jeux Olympiques de Paris 2024 - Actualités, calendriers, résultats
# Link: https://olympics.com/fr/paris-2024
# Snippet: Quels sont les sports présents aux Jeux Olympiques de Paris 2024 ? · Athlétisme · Aviron · Badminton · Basketball · Basketball 3x3 · Boxe · Breaking · Canoë ...
# ---
# Title: Billetterie Officielle de Paris 2024 - Jeux Olympiques et Paralympiques
# Link: https://tickets.paris2024.org/
# Snippet: Achetez vos billets exclusivement sur le site officiel de la billetterie de Paris 2024 pour participer au plus grand événement sportif au monde.
# ---
```
## Conclusion ## Conclusion
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. The updated parameters allow for more customized and localized search results. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward. By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.

View File

@@ -1,81 +0,0 @@
# SpiderTool
## Description
[Spider](https://spider.cloud/?ref=crewai) is the [fastest](https://github.com/spider-rs/spider/blob/main/benches/BENCHMARKS.md#benchmark-results) open source scraper and crawler that returns LLM-ready data. It converts any website into pure HTML, markdown, metadata or text while enabling you to crawl with custom actions using AI.
## Installation
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK too:
```python
pip install spider-client 'crewai[tools]'
```
## Example
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is already LLM-ready, so no need to do any cleaning there.
```python
from crewai_tools import SpiderTool
def main():
spider_tool = SpiderTool()
searcher = Agent(
role="Web Research Expert",
goal="Find related information from specific URL's",
backstory="An expert web researcher that uses the web extremely well",
tools=[spider_tool],
verbose=True,
)
return_metadata = Task(
description="Scrape https://spider.cloud with a limit of 1 and enable metadata",
expected_output="Metadata and 10 word summary of spider.cloud",
agent=searcher
)
crew = Crew(
agents=[searcher],
tasks=[
return_metadata,
],
verbose=2
)
crew.kickoff()
if __name__ == "__main__":
main()
```
## Arguments
- `api_key` (string, optional): Specifies Spider API key. If not specified, it looks for `SPIDER_API_KEY` in environment variables.
- `params` (object, optional): Optional parameters for the request. Defaults to `{"return_format": "markdown"}` to return the website's content in a format that fits LLMs better.
- `request` (string): The request type to perform. Possible values are `http`, `chrome`, and `smart`. Use `smart` to perform an HTTP request by default until JavaScript rendering is needed for the HTML.
- `limit` (int): The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.
- `depth` (int): The crawl limit for maximum depth. If `0`, no limit will be applied.
- `cache` (bool): Use HTTP caching for the crawl to speed up repeated runs. Default is `true`.
- `budget` (object): Object that has paths with a counter for limiting the amount of pages example `{"*":1}` for only crawling the root page.
- `locale` (string): The locale to use for request, example `en-US`.
- `cookies` (string): Add HTTP cookies to use for request.
- `stealth` (bool): Use stealth mode for headless chrome request to help prevent being blocked. The default is `true` on chrome.
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
- `metadata` (bool): Boolean to store metadata about the pages and content found. This could help improve AI interopt. Defaults to `false` unless you have the website already stored with the configuration enabled.
- `viewport` (object): Configure the viewport for chrome. Defaults to `800x600`.
- `encoding` (string): The type of encoding to use like `UTF-8`, `SHIFT_JIS`, or etc.
- `subdomains` (bool): Allow subdomains to be included. Default is `false`.
- `user_agent` (string): Add a custom HTTP user agent to the request. By default this is set to a random agent.
- `store_data` (bool): Boolean to determine if storage should be used. If set this takes precedence over `storageless`. Defaults to `false`.
- `gpt_config` (object): Use AI to generate actions to perform during the crawl. You can pass an array for the `"prompt"` to chain steps.
- `fingerprint` (bool): Use advanced fingerprint for chrome.
- `storageless` (bool): Boolean to prevent storing any type of data for the request including storage and AI vectors embedding. Defaults to `false` unless you have the website already stored.
- `readability` (bool): Use [readability](https://github.com/mozilla/readability) to pre-process the content for reading. This may drastically improve the content for LLM usage.
`return_format` (string): The format to return the data in. Possible values are `markdown`, `raw`, `text`, and `html2text`. Use `raw` to return the default format of the page like HTML etc.
- `proxy_enabled` (bool): Enable high performance premium proxies for the request to prevent being blocked at the network level.
- `query_selector` (string): The CSS query selector to use when extracting content from the markup.
- `full_resources` (bool): Crawl and download all the resources for a website.
- `request_timeout` (int): The timeout to use for request. Timeouts can be from `5-60`. The default is `30` seconds.
- `run_in_background` (bool): Run the request in the background. Useful if storing data and wanting to trigger crawls to the dashboard. This has no effect if storageless is set.

View File

@@ -1,30 +0,0 @@
# Vision Tool
## Description
This tool is used to extract text from images. When passed to the agent it will extract the text from the image and then use it to generate a response, report or any other output. The URL or the PATH of the image should be passed to the Agent.
## Installation
Install the crewai_tools package
```shell
pip install 'crewai[tools]'
```
## Usage
In order to use the VisionTool, the OpenAI API key should be set in the environment variable `OPENAI_API_KEY`.
```python
from crewai_tools import VisionTool
vision_tool = VisionTool()
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config["researcher"],
allow_delegation=False,
tools=[vision_tool]
)
```

View File

@@ -2,8 +2,8 @@ site_name: crewAI
site_author: crewAI, Inc site_author: crewAI, Inc
site_description: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks. site_description: Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
repo_name: crewAI repo_name: crewAI
repo_url: https://github.com/crewAIInc/crewAI repo_url: https://github.com/joaomdmoura/crewai/
site_url: https://docs.crewai.com site_url: https://crewai.com
edit_uri: edit/main/docs/ edit_uri: edit/main/docs/
copyright: Copyright &copy; 2024 crewAI, Inc copyright: Copyright &copy; 2024 crewAI, Inc
@@ -78,14 +78,14 @@ theme:
palette: palette:
- scheme: default - scheme: default
primary: deep orange primary: red
accent: deep orange accent: red
toggle: toggle:
icon: material/brightness-7 icon: material/brightness-7
name: Switch to dark mode name: Switch to dark mode
- scheme: slate - scheme: slate
primary: deep orange primary: red
accent: deep orange accent: red
toggle: toggle:
icon: material/brightness-4 icon: material/brightness-4
name: Switch to light mode name: Switch to light mode
@@ -119,9 +119,6 @@ theme:
nav: nav:
- Home: '/' - Home: '/'
- Getting Started:
- Installing CrewAI: 'getting-started/Installing-CrewAI.md'
- Starting a new CrewAI project: 'getting-started/Start-a-New-CrewAI-Project-Template-Method.md'
- Core Concepts: - Core Concepts:
- Agents: 'core-concepts/Agents.md' - Agents: 'core-concepts/Agents.md'
- Tasks: 'core-concepts/Tasks.md' - Tasks: 'core-concepts/Tasks.md'
@@ -129,14 +126,14 @@ nav:
- Processes: 'core-concepts/Processes.md' - Processes: 'core-concepts/Processes.md'
- Crews: 'core-concepts/Crews.md' - Crews: 'core-concepts/Crews.md'
- Collaboration: 'core-concepts/Collaboration.md' - Collaboration: 'core-concepts/Collaboration.md'
- Pipeline: 'core-concepts/Pipeline.md'
- Training: 'core-concepts/Training-Crew.md' - Training: 'core-concepts/Training-Crew.md'
- Memory: 'core-concepts/Memory.md' - Memory: 'core-concepts/Memory.md'
- Planning: 'core-concepts/Planning.md'
- Testing: 'core-concepts/Testing.md'
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md' - Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md' - Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides: - How to Guides:
- Starting Your crewAI Project: 'how-to/Start-a-New-CrewAI-Project.md'
- Installing CrewAI: 'how-to/Installing-CrewAI.md'
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
- Create Custom Tools: 'how-to/Create-Custom-Tools.md' - Create Custom Tools: 'how-to/Create-Custom-Tools.md'
- Using Sequential Process: 'how-to/Sequential.md' - Using Sequential Process: 'how-to/Sequential.md'
- Using Hierarchical Process: 'how-to/Hierarchical.md' - Using Hierarchical Process: 'how-to/Hierarchical.md'
@@ -149,42 +146,32 @@ nav:
- Kickoff a Crew Asynchronously: 'how-to/Kickoff-async.md' - Kickoff a Crew Asynchronously: 'how-to/Kickoff-async.md'
- Kickoff a Crew for a List: 'how-to/Kickoff-for-each.md' - Kickoff a Crew for a List: 'how-to/Kickoff-for-each.md'
- Replay from a specific task from a kickoff: 'how-to/Replay-tasks-from-latest-Crew-Kickoff.md' - Replay from a specific task from a kickoff: 'how-to/Replay-tasks-from-latest-Crew-Kickoff.md'
- Conditional Tasks: 'how-to/Conditional-Tasks.md'
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md' - Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md' - Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Tools Docs: - Tools Docs:
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'
- Code Interpreter: 'tools/CodeInterpreterTool.md'
- Composio Tools: 'tools/ComposioTool.md'
- CSV RAG Search: 'tools/CSVSearchTool.md'
- DALL-E Tool: 'tools/DALL-ETool.md'
- Directory RAG Search: 'tools/DirectorySearchTool.md'
- Directory Read: 'tools/DirectoryReadTool.md'
- Docx Rag Search: 'tools/DOCXSearchTool.md'
- EXA Search Web Loader: 'tools/EXASearchTool.md'
- File Read: 'tools/FileReadTool.md'
- File Write: 'tools/FileWriteTool.md'
- Firecrawl Crawl Website Tool: 'tools/FirecrawlCrawlWebsiteTool.md'
- Firecrawl Scrape Website Tool: 'tools/FirecrawlScrapeWebsiteTool.md'
- Firecrawl Search Tool: 'tools/FirecrgstawlSearchTool.md'
- Github RAG Search: 'tools/GitHubSearchTool.md'
- Google Serper Search: 'tools/SerperDevTool.md' - Google Serper Search: 'tools/SerperDevTool.md'
- JSON RAG Search: 'tools/JSONSearchTool.md' - Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- MDX RAG Search: 'tools/MDXSearchTool.md' - Composio Tools: 'tools/ComposioTool.md'
- MySQL Tool: 'tools/MySQLTool.md' - Code Interpreter: 'tools/CodeInterpreterTool.md'
- NL2SQL Tool: 'tools/NL2SQLTool.md'
- PDF RAG Search: 'tools/PDFSearchTool.md'
- PG RAG Search: 'tools/PGSearchTool.md'
- Scrape Website: 'tools/ScrapeWebsiteTool.md' - Scrape Website: 'tools/ScrapeWebsiteTool.md'
- Directory Read: 'tools/DirectoryReadTool.md'
- Exa Serch Web Loader: 'tools/EXASearchTool.md'
- File Read: 'tools/FileReadTool.md'
- Selenium Scraper: 'tools/SeleniumScrapingTool.md' - Selenium Scraper: 'tools/SeleniumScrapingTool.md'
- Spider Scraper: 'tools/SpiderTool.md' - Directory RAG Search: 'tools/DirectorySearchTool.md'
- PDF RAG Search: 'tools/PDFSearchTool.md'
- TXT RAG Search: 'tools/TXTSearchTool.md' - TXT RAG Search: 'tools/TXTSearchTool.md'
- Vision Tool: 'tools/VisionTool.md' - CSV RAG Search: 'tools/CSVSearchTool.md'
- Website RAG Search: 'tools/WebsiteSearchTool.md'
- XML RAG Search: 'tools/XMLSearchTool.md' - XML RAG Search: 'tools/XMLSearchTool.md'
- Youtube Channel RAG Search: 'tools/YoutubeChannelSearchTool.md' - JSON RAG Search: 'tools/JSONSearchTool.md'
- Docx Rag Search: 'tools/DOCXSearchTool.md'
- MDX RAG Search: 'tools/MDXSearchTool.md'
- PG RAG Search: 'tools/PGSearchTool.md'
- Website RAG Search: 'tools/WebsiteSearchTool.md'
- Github RAG Search: 'tools/GitHubSearchTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'
- Youtube Video RAG Search: 'tools/YoutubeVideoSearchTool.md' - Youtube Video RAG Search: 'tools/YoutubeVideoSearchTool.md'
- Youtube Channel RAG Search: 'tools/YoutubeChannelSearchTool.md'
- Examples: - Examples:
- Trip Planner Crew: https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner" - Trip Planner Crew: https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner"
- Create Instagram Post: https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post" - Create Instagram Post: https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
@@ -210,6 +197,6 @@ extra:
property: G-N3Q505TMQ6 property: G-N3Q505TMQ6
social: social:
- icon: fontawesome/brands/twitter - icon: fontawesome/brands/twitter
link: https://x.com/crewAIInc link: https://twitter.com/joaomdmoura
- icon: fontawesome/brands/github - icon: fontawesome/brands/github
link: https://github.com/crewAIInc/crewAI link: https://github.com/joaomdmoura/crewAI

5352
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "crewai" name = "crewai"
version = "0.66.0" version = "0.36.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks." description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"] authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md" readme = "README.md"
@@ -8,31 +8,27 @@ packages = [{ include = "crewai", from = "src" }]
[tool.poetry.urls] [tool.poetry.urls]
Homepage = "https://crewai.com" Homepage = "https://crewai.com"
Documentation = "https://docs.crewai.com" Documentation = "https://github.com/joaomdmoura/CrewAI/wiki/Index"
Repository = "https://github.com/crewAIInc/crewAI" Repository = "https://github.com/joaomdmoura/crewai"
[tool.poetry.dependencies] [tool.poetry.dependencies]
python = ">=3.10,<=3.13" python = ">=3.10,<=3.13"
pydantic = "^2.4.2" pydantic = "^2.4.2"
langchain = "^0.2.16" langchain = ">0.2,<=0.3"
openai = "^1.13.3" openai = "^1.13.3"
opentelemetry-api = "^1.22.0" opentelemetry-api = "^1.22.0"
opentelemetry-sdk = "^1.22.0" opentelemetry-sdk = "^1.22.0"
opentelemetry-exporter-otlp-proto-http = "^1.22.0" opentelemetry-exporter-otlp-proto-http = "^1.22.0"
instructor = "1.3.3" instructor = "1.3.3"
regex = "^2024.9.11" regex = "^2023.12.25"
crewai-tools = { version = "^0.12.1", optional = true } crewai-tools = { version = "^0.4.8", optional = true }
click = "^8.1.7" click = "^8.1.7"
python-dotenv = "^1.0.0" python-dotenv = "^1.0.0"
appdirs = "^1.4.4" appdirs = "^1.4.4"
jsonref = "^1.1.0" jsonref = "^1.1.0"
agentops = { version = "^0.3.0", optional = true } agentops = { version = "^0.1.9", optional = true }
embedchain = "^0.1.114" embedchain = "^0.1.114"
json-repair = "^0.25.2" json-repair = "^0.25.2"
auth0-python = "^4.7.1"
poetry = "^1.8.3"
litellm = "^1.44.22"
pyvis = "^0.3.2"
[tool.poetry.extras] [tool.poetry.extras]
tools = ["crewai-tools"] tools = ["crewai-tools"]
@@ -50,13 +46,12 @@ mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
mkdocs-material-extensions = "^1.3.1" mkdocs-material-extensions = "^1.3.1"
pillow = "^10.2.0" pillow = "^10.2.0"
cairosvg = "^2.7.1" cairosvg = "^2.7.1"
crewai-tools = "^0.12.1" crewai-tools = "^0.4.8"
[tool.poetry.group.test.dependencies] [tool.poetry.group.test.dependencies]
pytest = "^8.0.0" pytest = "^8.0.0"
pytest-vcr = "^1.0.2" pytest-vcr = "^1.0.2"
python-dotenv = "1.0.0" python-dotenv = "1.0.0"
pytest-asyncio = "^0.23.7"
[tool.poetry.scripts] [tool.poetry.scripts]
crewai = "crewai.cli.cli:crewai" crewai = "crewai.cli.cli:crewai"
@@ -64,10 +59,7 @@ crewai = "crewai.cli.cli:crewai"
[tool.mypy] [tool.mypy]
ignore_missing_imports = true ignore_missing_imports = true
disable_error_code = 'import-untyped' disable_error_code = 'import-untyped'
exclude = ["cli/templates"] exclude = ["cli/templates/main.py", "cli/templates/crew.py"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]
[build-system] [build-system]
requires = ["poetry-core"] requires = ["poetry-core"]

View File

@@ -1,19 +1,6 @@
import warnings
from crewai.agent import Agent from crewai.agent import Agent
from crewai.crew import Crew from crewai.crew import Crew
from crewai.flow.flow import Flow
from crewai.llm import LLM
from crewai.pipeline import Pipeline
from crewai.process import Process from crewai.process import Process
from crewai.routers import Router
from crewai.task import Task from crewai.task import Task
warnings.filterwarnings( __all__ = ["Agent", "Crew", "Process", "Task"]
"ignore",
message="Pydantic serializer warnings:",
category=UserWarning,
module="pydantic.main",
)
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]

View File

@@ -1,40 +1,36 @@
import os import os
from inspect import signature from inspect import signature
from typing import Any, List, Optional, Union from typing import Any, List, Optional, Tuple
from langchain.agents.agent import RunnableAgent
from langchain.agents.tools import BaseTool
from langchain.agents.tools import tool as LangChainTool
from langchain_core.agents import AgentAction
from langchain_core.callbacks import BaseCallbackHandler
from langchain_openai import ChatOpenAI
from pydantic import Field, InstanceOf, PrivateAttr, model_validator from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
from crewai.utilities import Converter, Prompts
from crewai.tools.agent_tools import AgentTools
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.agent_builder.base_agent import BaseAgent from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.memory.contextual.contextual_memory import ContextualMemory from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.utilities.token_counter_callback import TokenCalcHandler from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.llm import LLM from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
try:
import agentops # type: ignore # Name "agentops" already defined on line 21
from agentops import track_agent
except ImportError:
def mock_agent_ops_provider(): def track_agent():
def track_agent(*args, **kwargs):
def noop(f): def noop(f):
return f return f
return noop return noop
return track_agent
agentops = None
if os.environ.get("AGENTOPS_API_KEY"):
try:
from agentops import track_agent
except ImportError:
track_agent = mock_agent_ops_provider()
else:
track_agent = mock_agent_ops_provider()
@track_agent() @track_agent()
class Agent(BaseAgent): class Agent(BaseAgent):
@@ -58,6 +54,9 @@ class Agent(BaseAgent):
allow_delegation: Whether the agent is allowed to delegate tasks to other agents. allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution. step_callback: Callback to be executed after each step of the agent execution.
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
allow_code_execution: Enable code execution for the agent.
max_retry_limit: Maximum number of retries for an agent to execute a task when an error occurs.
""" """
_times_executed: int = PrivateAttr(default=0) _times_executed: int = PrivateAttr(default=0)
@@ -74,16 +73,18 @@ class Agent(BaseAgent):
default=None, default=None,
description="Callback to be executed after each step of the agent execution.", description="Callback to be executed after each step of the agent execution.",
) )
use_system_prompt: Optional[bool] = Field( llm: Any = Field(
default=True, default_factory=lambda: ChatOpenAI(
description="Use system prompt for the agent.", model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4o")
) ),
llm: Union[str, InstanceOf[LLM], Any] = Field( description="Language model that will run the agent.",
description="Language model that will run the agent.", default=None
) )
function_calling_llm: Optional[Any] = Field( function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None description="Language model that will run the agent.", default=None
) )
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
default=None, description="Callback to be executed"
)
system_template: Optional[str] = Field( system_template: Optional[str] = Field(
default=None, description="System format for the agent." default=None, description="System format for the agent."
) )
@@ -99,86 +100,45 @@ class Agent(BaseAgent):
allow_code_execution: Optional[bool] = Field( allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent." default=False, description="Enable code execution for the agent."
) )
respect_context_window: bool = Field(
default=True,
description="Keep messages under the context window size by summarizing content.",
)
max_iter: int = Field(
default=20,
description="Maximum number of iterations for an agent to execute a task before giving it's best answer",
)
max_retry_limit: int = Field( max_retry_limit: int = Field(
default=2, default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.", description="Maximum number of retries for an agent to execute a task when an error occurs.",
) )
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
super().__init__(**config, **data)
__pydantic_self__.agent_ops_agent_name = __pydantic_self__.role
@model_validator(mode="after") @model_validator(mode="after")
def post_init_setup(self): def set_agent_executor(self) -> "Agent":
self.agent_ops_agent_name = self.role """Ensure agent executor and token process are set."""
if hasattr(self.llm, "model_name"):
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
# Handle different cases for self.llm # Ensure self.llm.callbacks is a list
if isinstance(self.llm, str): if not isinstance(self.llm.callbacks, list):
# If it's a string, create an LLM instance self.llm.callbacks = []
self.llm = LLM(model=self.llm)
elif isinstance(self.llm, LLM):
# If it's already an LLM instance, keep it as is
pass
elif self.llm is None:
# If it's None, use environment variables or default
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
llm_params = {"model": model_name}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get( # Check if an instance of TokenCalcHandler already exists in the list
"OPENAI_BASE_URL" if not any(
) isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
if api_base: ):
llm_params["base_url"] = api_base self.llm.callbacks.append(token_handler)
api_key = os.environ.get("OPENAI_API_KEY") if agentops and not any(
if api_key: isinstance(handler, agentops.LangchainCallbackHandler)
llm_params["api_key"] = api_key for handler in self.llm.callbacks
):
self.llm = LLM(**llm_params) agentops.stop_instrumenting()
else: self.llm.callbacks.append(agentops.LangchainCallbackHandler())
# For any other type, attempt to extract relevant attributes
llm_params = {
"model": getattr(self.llm, "model_name", None)
or getattr(self.llm, "deployment_name", None)
or str(self.llm),
"temperature": getattr(self.llm, "temperature", None),
"max_tokens": getattr(self.llm, "max_tokens", None),
"logprobs": getattr(self.llm, "logprobs", None),
"timeout": getattr(self.llm, "timeout", None),
"max_retries": getattr(self.llm, "max_retries", None),
"api_key": getattr(self.llm, "api_key", None),
"base_url": getattr(self.llm, "base_url", None),
"organization": getattr(self.llm, "organization", None),
}
# Remove None values to avoid passing unnecessary parameters
llm_params = {k: v for k, v in llm_params.items() if v is not None}
self.llm = LLM(**llm_params)
# Similar handling for function_calling_llm
if self.function_calling_llm:
if isinstance(self.function_calling_llm, str):
self.function_calling_llm = LLM(model=self.function_calling_llm)
elif not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = LLM(
model=getattr(self.function_calling_llm, "model_name", None)
or getattr(self.function_calling_llm, "deployment_name", None)
or str(self.function_calling_llm)
)
if not self.agent_executor: if not self.agent_executor:
self._setup_agent_executor() if not self.cache_handler:
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
return self return self
def _setup_agent_executor(self):
if not self.cache_handler:
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def execute_task( def execute_task(
self, self,
task: Any, task: Any,
@@ -216,7 +176,16 @@ class Agent(BaseAgent):
task_prompt += self.i18n.slice("memory").format(memory=memory) task_prompt += self.i18n.slice("memory").format(memory=memory)
tools = tools or self.tools or [] tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task) parsed_tools = self._parse_tools(tools)
self.create_agent_executor(tools=tools)
self.agent_executor.tools = parsed_tools
self.agent_executor.task = task
# TODO: COMPARE WITH ARGS AND WITHOUT ARGS
self.agent_executor.tools_description = self._render_text_description_and_args(
parsed_tools
)
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
if self.crew and self.crew._train: if self.crew and self.crew._train:
task_prompt = self._training_handler(task_prompt=task_prompt) task_prompt = self._training_handler(task_prompt=task_prompt)
@@ -229,16 +198,15 @@ class Agent(BaseAgent):
"input": task_prompt, "input": task_prompt,
"tool_names": self.agent_executor.tools_names, "tool_names": self.agent_executor.tools_names,
"tools": self.agent_executor.tools_description, "tools": self.agent_executor.tools_description,
"ask_for_human_input": task.human_input,
} }
)["output"] )["output"]
except Exception as e: except Exception as e:
self._times_executed += 1 self._times_executed += 1
if self._times_executed > self.max_retry_limit: if self._times_executed > self.max_retry_limit:
raise e raise e
result = self.execute_task(task, context, tools) self.execute_task(task, context, tools)
if self.max_rpm and self._rpm_controller: if self.max_rpm:
self._rpm_controller.stop_rpm_counter() self._rpm_controller.stop_rpm_counter()
# If there was any tool in self.tools_results that had result_as_answer # If there was any tool in self.tools_results that had result_as_answer
@@ -250,25 +218,72 @@ class Agent(BaseAgent):
return result return result
def create_agent_executor(self, tools=None, task=None) -> None: def format_log_to_str(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
observation_prefix: str = "Observation: ",
llm_prefix: str = "",
) -> str:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
return thoughts
def create_agent_executor(self, tools=None) -> None:
"""Create an agent executor for the agent. """Create an agent executor for the agent.
Returns: Returns:
An instance of the CrewAgentExecutor class. An instance of the CrewAgentExecutor class.
""" """
tools = tools or self.tools or [] tools = tools or self.tools or []
parsed_tools = self._parse_tools(tools)
agent_args = {
"input": lambda x: x["input"],
"tools": lambda x: x["tools"],
"tool_names": lambda x: x["tool_names"],
"agent_scratchpad": lambda x: self.format_log_to_str(
x["intermediate_steps"]
),
}
executor_args = {
"llm": self.llm,
"i18n": self.i18n,
"crew": self.crew,
"crew_agent": self,
"tools": self._parse_tools(tools),
"verbose": self.verbose,
"original_tools": tools,
"handle_parsing_errors": True,
"max_iterations": self.max_iter,
"max_execution_time": self.max_execution_time,
"step_callback": self.step_callback,
"tools_handler": self.tools_handler,
"function_calling_llm": self.function_calling_llm,
"callbacks": self.callbacks,
}
if self._rpm_controller:
executor_args["request_within_rpm_limit"] = (
self._rpm_controller.check_or_wait
)
prompt = Prompts( prompt = Prompts(
agent=self,
tools=tools,
i18n=self.i18n, i18n=self.i18n,
use_system_prompt=self.use_system_prompt, tools=tools,
system_template=self.system_template, system_template=self.system_template,
prompt_template=self.prompt_template, prompt_template=self.prompt_template,
response_template=self.response_template, response_template=self.response_template,
).task_execution() ).task_execution()
execution_prompt = prompt.partial(
goal=self.goal,
role=self.role,
backstory=self.backstory,
)
stop_words = [self.i18n.slice("observation")] stop_words = [self.i18n.slice("observation")]
if self.response_template: if self.response_template:
@@ -276,26 +291,11 @@ class Agent(BaseAgent):
self.response_template.split("{{ .Response }}")[1].strip() self.response_template.split("{{ .Response }}")[1].strip()
) )
bind = self.llm.bind(stop=stop_words)
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
self.agent_executor = CrewAgentExecutor( self.agent_executor = CrewAgentExecutor(
llm=self.llm, agent=RunnableAgent(runnable=inner_agent), **executor_args
task=task,
agent=self,
crew=self.crew,
tools=parsed_tools,
prompt=prompt,
original_tools=tools,
stop_words=stop_words,
max_iter=self.max_iter,
tools_handler=self.tools_handler,
tools_names=self.__tools_names(parsed_tools),
tools_description=self._render_text_description_and_args(parsed_tools),
step_callback=self.step_callback,
function_calling_llm=self.function_calling_llm,
respect_context_window=self.respect_context_window,
request_within_rpm_limit=self._rpm_controller.check_or_wait
if self._rpm_controller
else None,
callbacks=[TokenCalcHandler(self._token_process)],
) )
def get_delegation_tools(self, agents: List[BaseAgent]): def get_delegation_tools(self, agents: List[BaseAgent]):
@@ -316,7 +316,7 @@ class Agent(BaseAgent):
def get_output_converter(self, llm, text, model, instructions): def get_output_converter(self, llm, text, model, instructions):
return Converter(llm=llm, text=text, model=model, instructions=instructions) return Converter(llm=llm, text=text, model=model, instructions=instructions)
def _parse_tools(self, tools: List[Any]) -> List[Any]: # type: ignore def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
"""Parse tools to be used for the task.""" """Parse tools to be used for the task."""
tools_list = [] tools_list = []
try: try:
@@ -344,9 +344,8 @@ class Agent(BaseAgent):
human_feedbacks = [ human_feedbacks = [
i["human_feedback"] for i in data.get(agent_id, {}).values() i["human_feedback"] for i in data.get(agent_id, {}).values()
] ]
task_prompt += ( task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
"\n\nYou MUST follow these instructions: \n " human_feedbacks
+ "\n - ".join(human_feedbacks)
) )
return task_prompt return task_prompt
@@ -355,13 +354,12 @@ class Agent(BaseAgent):
"""Use trained data for the agent task prompt to improve output.""" """Use trained data for the agent task prompt to improve output."""
if data := CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load(): if data := CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load():
if trained_data_output := data.get(self.role): if trained_data_output := data.get(self.role):
task_prompt += ( task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
"\n\nYou MUST follow these instructions: \n - " trained_data_output["suggestions"]
+ "\n - ".join(trained_data_output["suggestions"])
) )
return task_prompt return task_prompt
def _render_text_description(self, tools: List[Any]) -> str: def _render_text_description(self, tools: List[BaseTool]) -> str:
"""Render the tool name and description in plain text. """Render the tool name and description in plain text.
Output will be in the format of: Output will be in the format of:
@@ -380,7 +378,7 @@ class Agent(BaseAgent):
return description return description
def _render_text_description_and_args(self, tools: List[Any]) -> str: def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
"""Render the tool name, description, and args in plain text. """Render the tool name, description, and args in plain text.
Output will be in the format of: Output will be in the format of:

View File

@@ -1,5 +1,4 @@
from .cache.cache_handler import CacheHandler from .cache.cache_handler import CacheHandler
from .executor import CrewAgentExecutor
from .parser import CrewAgentParser from .parser import CrewAgentParser
from .tools_handler import ToolsHandler from .tools_handler import ToolsHandler
__all__ = ["CacheHandler", "CrewAgentParser", "ToolsHandler"]

View File

@@ -1,12 +1,12 @@
import uuid import uuid
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from copy import copy as shallow_copy from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Dict, List, Optional, TypeVar from typing import Any, Dict, List, Optional, TypeVar
from pydantic import ( from pydantic import (
UUID4, UUID4,
BaseModel, BaseModel,
ConfigDict,
Field, Field,
InstanceOf, InstanceOf,
PrivateAttr, PrivateAttr,
@@ -19,7 +19,6 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
from crewai.agents.cache.cache_handler import CacheHandler from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler from crewai.agents.tools_handler import ToolsHandler
from crewai.utilities import I18N, Logger, RPMController from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
T = TypeVar("T", bound="BaseAgent") T = TypeVar("T", bound="BaseAgent")
@@ -45,7 +44,6 @@ class BaseAgent(ABC, BaseModel):
i18n (I18N): Internationalization settings. i18n (I18N): Internationalization settings.
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class. cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class. tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
max_tokens: Maximum number of tokens for the agent to generate in a response.
Methods: Methods:
@@ -74,26 +72,21 @@ class BaseAgent(ABC, BaseModel):
""" """
__hash__ = object.__hash__ # type: ignore __hash__ = object.__hash__ # type: ignore
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=False)) _logger: Logger = PrivateAttr()
_rpm_controller: Optional[RPMController] = PrivateAttr(default=None) _rpm_controller: RPMController = PrivateAttr(default=None)
_request_within_rpm_limit: Any = PrivateAttr(default=None) _request_within_rpm_limit: Any = PrivateAttr(default=None)
_original_role: Optional[str] = PrivateAttr(default=None) formatting_errors: int = 0
_original_goal: Optional[str] = PrivateAttr(default=None) model_config = ConfigDict(arbitrary_types_allowed=True)
_original_backstory: Optional[str] = PrivateAttr(default=None)
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True) id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
formatting_errors: int = Field(
default=0, description="Number of formatting errors."
)
role: str = Field(description="Role of the agent") role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent") goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent") backstory: str = Field(description="Backstory of the agent")
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", default=None, exclude=True
)
cache: bool = Field( cache: bool = Field(
default=True, description="Whether the agent should use a cache for tool usage." default=True, description="Whether the agent should use a cache for tool usage."
) )
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", default=None
)
verbose: bool = Field( verbose: bool = Field(
default=False, description="Verbose mode for the Agent Execution" default=False, description="Verbose mode for the Agent Execution"
) )
@@ -102,8 +95,7 @@ class BaseAgent(ABC, BaseModel):
description="Maximum number of requests per minute for the agent execution to be respected.", description="Maximum number of requests per minute for the agent execution to be respected.",
) )
allow_delegation: bool = Field( allow_delegation: bool = Field(
default=False, default=True, description="Allow delegation of tasks to agents"
description="Enable agent to delegate and ask questions among each other.",
) )
tools: Optional[List[Any]] = Field( tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents' disposal" default_factory=list, description="Tools at agents' disposal"
@@ -125,33 +117,21 @@ class BaseAgent(ABC, BaseModel):
tools_handler: InstanceOf[ToolsHandler] = Field( tools_handler: InstanceOf[ToolsHandler] = Field(
default=None, description="An instance of the ToolsHandler class." default=None, description="An instance of the ToolsHandler class."
) )
max_tokens: Optional[int] = Field(
default=None, description="Maximum number of tokens for the agent's execution."
)
@model_validator(mode="before") _original_role: str | None = None
@classmethod _original_goal: str | None = None
def process_model_config(cls, values): _original_backstory: str | None = None
return process_config(values, cls) _token_process: TokenProcess = TokenProcess()
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
super().__init__(**config, **data)
@model_validator(mode="after") @model_validator(mode="after")
def validate_and_set_attributes(self): def set_config_attributes(self):
# Validate required fields if self.config:
for field in ["role", "goal", "backstory"]: for key, value in self.config.items():
if getattr(self, field) is None: setattr(self, key, value)
raise ValueError(
f"{field} must be provided either directly or through config"
)
# Set private attributes
self._logger = Logger(verbose=self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
if not self._token_process:
self._token_process = TokenProcess()
return self return self
@field_validator("id", mode="before") @field_validator("id", mode="before")
@@ -162,10 +142,18 @@ class BaseAgent(ABC, BaseModel):
"may_not_set_field", "This field is not to be set by the user.", {} "may_not_set_field", "This field is not to be set by the user.", {}
) )
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "BaseAgent":
"""Set attributes based on the agent configuration."""
if self.config:
for key, value in self.config.items():
setattr(self, key, value)
return self
@model_validator(mode="after") @model_validator(mode="after")
def set_private_attrs(self): def set_private_attrs(self):
"""Set private attributes.""" """Set private attributes."""
self._logger = Logger(verbose=self.verbose) self._logger = Logger(self.verbose)
if self.max_rpm and not self._rpm_controller: if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController( self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger max_rpm=self.max_rpm, logger=self._logger
@@ -174,15 +162,6 @@ class BaseAgent(ABC, BaseModel):
self._token_process = TokenProcess() self._token_process = TokenProcess()
return self return self
@property
def key(self):
source = [
self._original_role or self.role,
self._original_goal or self.goal,
self._original_backstory or self.backstory,
]
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
@abstractmethod @abstractmethod
def execute_task( def execute_task(
self, self,
@@ -229,8 +208,10 @@ class BaseAgent(ABC, BaseModel):
# Copy llm and clear callbacks # Copy llm and clear callbacks
existing_llm = shallow_copy(self.llm) existing_llm = shallow_copy(self.llm)
existing_llm.callbacks = []
copied_data = self.model_dump(exclude=exclude) copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None} copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools) copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
return copied_agent return copied_agent

View File

@@ -3,10 +3,10 @@ from typing import TYPE_CHECKING, Optional
from crewai.memory.entity.entity_memory_item import EntityMemoryItem from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.utilities.converter import ConverterError from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities import I18N from crewai.utilities import I18N
from crewai.utilities.printer import Printer
if TYPE_CHECKING: if TYPE_CHECKING:
@@ -20,14 +20,15 @@ class CrewAgentExecutorMixin:
crew_agent: Optional["BaseAgent"] crew_agent: Optional["BaseAgent"]
task: Optional["Task"] task: Optional["Task"]
iterations: int iterations: int
force_answer_max_iterations: int
have_forced_answer: bool have_forced_answer: bool
max_iter: int
_i18n: I18N _i18n: I18N
_printer: Printer = Printer()
def _should_force_answer(self) -> bool: def _should_force_answer(self) -> bool:
"""Determine if a forced answer is required based on iteration count.""" """Determine if a forced answer is required based on iteration count."""
return (self.iterations >= self.max_iter) and not self.have_forced_answer return (
self.iterations == self.force_answer_max_iterations
) and not self.have_forced_answer
def _create_short_term_memory(self, output) -> None: def _create_short_term_memory(self, output) -> None:
"""Create and save a short-term memory item if conditions are met.""" """Create and save a short-term memory item if conditions are met."""
@@ -38,17 +39,18 @@ class CrewAgentExecutorMixin:
and "Action: Delegate work to coworker" not in output.log and "Action: Delegate work to coworker" not in output.log
): ):
try: try:
memory = ShortTermMemoryItem(
data=output.log,
agent=self.crew_agent.role,
metadata={
"observation": self.task.description,
},
)
if ( if (
hasattr(self.crew, "_short_term_memory") hasattr(self.crew, "_short_term_memory")
and self.crew._short_term_memory and self.crew._short_term_memory
): ):
self.crew._short_term_memory.save( self.crew._short_term_memory.save(memory)
value=output.log,
metadata={
"observation": self.task.description,
},
agent=self.crew_agent.role,
)
except Exception as e: except Exception as e:
print(f"Failed to add to short term memory: {e}") print(f"Failed to add to short term memory: {e}")
pass pass
@@ -102,12 +104,6 @@ class CrewAgentExecutorMixin:
def _ask_human_input(self, final_answer: dict) -> str: def _ask_human_input(self, final_answer: dict) -> str:
"""Prompt human input for final decision making.""" """Prompt human input for final decision making."""
self._printer.print( return input(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m" self._i18n.slice("getting_input").format(final_answer=final_answer)
) )
self._printer.print(
content="\n\n=====\n## Please provide feedback on the Final Result and the Agent's actions:",
color="bold_yellow",
)
return input()

View File

@@ -39,3 +39,9 @@ class OutputConverter(BaseModel, ABC):
def to_json(self, current_attempt=1): def to_json(self, current_attempt=1):
"""Convert text to json.""" """Convert text to json."""
pass pass
@property
@abstractmethod
def is_gpt(self) -> bool:
"""Return if llm provided is of gpt from openai."""
pass

View File

@@ -1,4 +1,4 @@
from crewai.types.usage_metrics import UsageMetrics from typing import Any, Dict
class TokenProcess: class TokenProcess:
@@ -18,10 +18,10 @@ class TokenProcess:
def sum_successful_requests(self, requests: int): def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests self.successful_requests = self.successful_requests + requests
def get_summary(self) -> UsageMetrics: def get_summary(self) -> Dict[str, Any]:
return UsageMetrics( return {
total_tokens=self.total_tokens, "total_tokens": self.total_tokens,
prompt_tokens=self.prompt_tokens, "prompt_tokens": self.prompt_tokens,
completion_tokens=self.completion_tokens, "completion_tokens": self.completion_tokens,
successful_requests=self.successful_requests, "successful_requests": self.successful_requests,
) }

View File

@@ -1,3 +1 @@
from .cache_handler import CacheHandler from .cache_handler import CacheHandler
__all__ = ["CacheHandler"]

View File

@@ -1,12 +1,13 @@
from typing import Any, Dict, Optional from typing import Optional
from pydantic import BaseModel, PrivateAttr
class CacheHandler(BaseModel): class CacheHandler:
"""Callback handler for tool usage.""" """Callback handler for tool usage."""
_cache: Dict[str, Any] = PrivateAttr(default_factory=dict) _cache: dict = {}
def __init__(self):
self._cache = {}
def add(self, tool, input, output): def add(self, tool, input, output):
self._cache[f"{tool}-{input}"] = output self._cache[f"{tool}-{input}"] = output

View File

@@ -1,357 +0,0 @@
import json
import re
from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.parser import CrewAgentParser
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from crewai.utilities.logger import Logger
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.agents.parser import (
AgentAction,
AgentFinish,
OutputParserException,
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
)
class CrewAgentExecutor(CrewAgentExecutorMixin):
_logger: Logger = Logger()
def __init__(
self,
llm: Any,
task: Any,
crew: Any,
agent: Any,
prompt: dict[str, str],
max_iter: int,
tools: List[Any],
tools_names: str,
stop_words: List[str],
tools_description: str,
tools_handler: ToolsHandler,
step_callback: Any = None,
original_tools: List[Any] = [],
function_calling_llm: Any = None,
respect_context_window: bool = False,
request_within_rpm_limit: Any = None,
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm = llm
self.task = task
self.agent = agent
self.crew = crew
self.prompt = prompt
self.tools = tools
self.tools_names = tools_names
self.stop = stop_words
self.max_iter = max_iter
self.callbacks = callbacks
self._printer: Printer = Printer()
self.tools_handler = tools_handler
self.original_tools = original_tools
self.step_callback = step_callback
self.use_stop_words = self.llm.supports_stop_words()
self.tools_description = tools_description
self.function_calling_llm = function_calling_llm
self.respect_context_window = respect_context_window
self.request_within_rpm_limit = request_within_rpm_limit
self.ask_for_human_input = False
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.have_forced_answer = False
self.name_to_tool_map = {tool.name: tool for tool in self.tools}
if self.llm.stop:
self.llm.stop = list(set(self.llm.stop + self.stop))
else:
self.llm.stop = self.stop
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
self.messages.append(self._format_msg(system_prompt, role="system"))
self.messages.append(self._format_msg(user_prompt))
else:
user_prompt = self._format_prompt(self.prompt.get("prompt", ""), inputs)
self.messages.append(self._format_msg(user_prompt))
self._show_start_logs()
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
formatted_answer = self._invoke_loop()
if self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
# Making sure we only ask for it once, so disabling for the next thought loop
self.ask_for_human_input = False
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
return {"output": formatted_answer.output}
def _invoke_loop(self, formatted_answer=None):
try:
while not isinstance(formatted_answer, AgentFinish):
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
if not self.use_stop_words:
try:
self._format_answer(answer)
except OutputParserException as e:
if (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE
in e.error
):
answer = answer.split("Observation:")[0].strip()
self.iterations += 1
formatted_answer = self._format_answer(answer)
if isinstance(formatted_answer, AgentAction):
action_result = self._use_tool(formatted_answer)
formatted_answer.text += f"\nObservation: {action_result}"
formatted_answer.result = action_result
self._show_logs(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="user")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
if self.iterations > self.log_error_after:
self._printer.print(
content=f"Error parsing LLM output, agent will retry: {e.error}",
color="red",
)
return self._invoke_loop(formatted_answer)
except Exception as e:
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
str(e)
):
self._handle_context_length()
return self._invoke_loop(formatted_answer)
else:
raise e
self._show_logs(formatted_answer)
return formatted_answer
def _show_start_logs(self):
if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
):
agent_role = self.agent.role.split("\n")[0]
self._printer.print(
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
self._printer.print(
content=f"\033[95m## Task:\033[00m \033[92m{self.task.description}\033[00m"
)
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
):
agent_role = self.agent.role.split("\n")[0]
if isinstance(formatted_answer, AgentAction):
thought = re.sub(r"\n+", "\n", formatted_answer.thought)
formatted_json = json.dumps(
formatted_answer.tool_input,
indent=2,
ensure_ascii=False,
)
self._printer.print(
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
if thought and thought != "":
self._printer.print(
content=f"\033[95m## Thought:\033[00m \033[92m{thought}\033[00m"
)
self._printer.print(
content=f"\033[95m## Using tool:\033[00m \033[92m{formatted_answer.tool}\033[00m"
)
self._printer.print(
content=f"\033[95m## Tool Input:\033[00m \033[92m\n{formatted_json}\033[00m"
)
self._printer.print(
content=f"\033[95m## Tool Output:\033[00m \033[92m\n{formatted_answer.result}\033[00m"
)
elif isinstance(formatted_answer, AgentFinish):
self._printer.print(
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
self._printer.print(
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
)
def _use_tool(self, agent_action: AgentAction) -> Any:
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return tool_result
def _summarize_messages(self) -> None:
messages_groups = []
for message in self.messages:
content = message["content"]
cut_size = self.llm.get_context_window_size()
for i in range(0, len(content), cut_size):
messages_groups.append(content[i : i + cut_size])
summarized_contents = []
for group in messages_groups:
summary = self.llm.call(
[
self._format_msg(
self._i18n.slice("summarizer_system_message"), role="system"
),
self._format_msg(
self._i18n.slice("sumamrize_instruction").format(group=group),
),
],
callbacks=self.callbacks,
)
summarized_contents.append(summary)
merged_summary = " ".join(str(content) for content in summarized_contents)
self.messages = [
self._format_msg(
self._i18n.slice("summary").format(merged_summary=merged_summary)
)
]
def _handle_context_length(self) -> None:
if self.respect_context_window:
self._logger.log(
"debug",
"Context length exceeded. Summarizing content to fit the model context window.",
color="yellow",
)
self._summarize_messages()
else:
self._logger.log(
"debug",
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
color="red",
)
raise SystemExit(
"Context length exceeded and user opted not to summarize. Consider using smaller text or RAG tools from crewai_tools."
)
def _handle_crew_training_output(
self, result: AgentFinish, human_feedback: str | None = None
) -> None:
"""Function to handle the process of the training data."""
agent_id = str(self.agent.id)
if (
CrewTrainingHandler(TRAINING_DATA_FILE).load()
and not self.ask_for_human_input
):
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
if training_data.get(agent_id):
training_data[agent_id][self.crew._train_iteration][
"improved_output"
] = result.output
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
if self.ask_for_human_input and human_feedback is not None:
training_data = {
"initial_output": result.output,
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.agent.role,
}
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if isinstance(train_iteration, int):
CrewTrainingHandler(TRAINING_DATA_FILE).append(
train_iteration, agent_id, training_data
)
else:
self._logger.log(
"error",
"Invalid train iteration type. Expected int.",
color="red",
)
else:
self._logger.log(
"error",
"Crew is None or does not have _train_iteration attribute.",
color="red",
)
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
prompt = prompt.replace("{input}", inputs["input"])
prompt = prompt.replace("{tool_names}", inputs["tool_names"])
prompt = prompt.replace("{tools}", inputs["tools"])
return prompt
def _format_answer(self, answer: str) -> Union[AgentAction, AgentFinish]:
return CrewAgentParser(agent=self.agent).parse(answer)
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
return {"role": role, "content": prompt}

View File

@@ -0,0 +1,280 @@
import threading
import time
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from langchain.agents import AgentExecutor
from langchain.agents.agent import ExceptionTool
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
from langchain_core.exceptions import OutputParserException
from langchain_core.tools import BaseTool
from langchain_core.utils.input import get_color_mapping
from pydantic import InstanceOf
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.training_handler import CrewTrainingHandler
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
_i18n: I18N = I18N()
should_ask_for_human_input: bool = False
llm: Any = None
iterations: int = 0
task: Any = None
tools_description: str = ""
tools_names: str = ""
original_tools: List[Any] = []
crew_agent: Any = None
crew: Any = None
function_calling_llm: Any = None
request_within_rpm_limit: Any = None
tools_handler: Optional[InstanceOf[ToolsHandler]] = None
max_iterations: Optional[int] = 15
have_forced_answer: bool = False
force_answer_max_iterations: Optional[int] = None # type: ignore # Incompatible types in assignment (expression has type "int | None", base class "CrewAgentExecutorMixin" defined the type as "int")
step_callback: Optional[Any] = None
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
color_mapping = get_color_mapping(
[tool.name.casefold() for tool in self.tools],
excluded_colors=["green", "red"],
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Allowing human input given task setting
if self.task.human_input:
self.should_ask_for_human_input = True
# Let's start tracking the number of iterations and time elapsed
self.iterations = 0
time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
while self._should_continue(self.iterations, time_elapsed):
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
next_step_output = self._take_next_step(
name_to_tool_map,
color_mapping,
inputs,
intermediate_steps,
run_manager=run_manager,
)
if self.step_callback:
self.step_callback(next_step_output)
if isinstance(next_step_output, AgentFinish):
# Creating long term memory
create_long_term_memory = threading.Thread(
target=self._create_long_term_memory, args=(next_step_output,)
)
create_long_term_memory.start()
return self._return(
next_step_output, intermediate_steps, run_manager=run_manager
)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return self._return(
tool_return, intermediate_steps, run_manager=run_manager
)
self.iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return self._return(output, intermediate_steps, run_manager=run_manager)
def _iter_next_step(
self,
name_to_tool_map: Dict[str, BaseTool],
color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Iterator[Union[AgentFinish, AgentAction, AgentStep]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
"""
try:
if self._should_force_answer():
error = self._i18n.errors("force_final_answer")
output = AgentAction("_Exception", error, error)
self.have_forced_answer = True
yield AgentStep(action=output, observation=error)
return
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
# Call the LLM to see what to do.
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
)
except OutputParserException as e:
if isinstance(self.handle_parsing_errors, bool):
raise_error = not self.handle_parsing_errors
else:
raise_error = False
if raise_error:
raise ValueError(
"An output parsing error occurred. "
"In order to pass this error back to the agent and have it try "
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
f"This is the error: {str(e)}"
)
str(e)
if isinstance(self.handle_parsing_errors, bool):
if e.send_to_llm:
observation = f"\n{str(e.observation)}"
str(e.llm_output)
else:
observation = ""
elif isinstance(self.handle_parsing_errors, str):
observation = f"\n{self.handle_parsing_errors}"
elif callable(self.handle_parsing_errors):
observation = f"\n{self.handle_parsing_errors(e)}"
else:
raise ValueError("Got unexpected type of `handle_parsing_errors`")
output = AgentAction("_Exception", observation, "")
if run_manager:
run_manager.on_agent_action(output, color="green")
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = ExceptionTool().run(
output.tool_input,
verbose=False,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
if self._should_force_answer():
error = self._i18n.errors("force_final_answer")
output = AgentAction("_Exception", error, error)
yield AgentStep(action=output, observation=error)
return
yield AgentStep(action=output, observation=observation)
return
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
if self.should_ask_for_human_input:
human_feedback = self._ask_human_input(output.return_values["output"])
if self.crew and self.crew._train:
self._handle_crew_training_output(output, human_feedback)
# Making sure we only ask for it once, so disabling for the next thought loop
self.should_ask_for_human_input = False
action = AgentAction(
tool="Human Input", tool_input=human_feedback, log=output.log
)
yield AgentStep(
action=action,
observation=self._i18n.slice("human_feedback").format(
human_feedback=human_feedback
),
)
return
else:
if self.crew and self.crew._train:
self._handle_crew_training_output(output)
yield output
return
self._create_short_term_memory(output)
actions: List[AgentAction]
actions = [output] if isinstance(output, AgentAction) else output
yield from actions
for agent_action in actions:
if run_manager:
run_manager.on_agent_action(agent_action, color="green")
tool_usage = ToolUsage(
tools_handler=self.tools_handler, # type: ignore # Argument "tools_handler" to "ToolUsage" has incompatible type "ToolsHandler | None"; expected "ToolsHandler"
tools=self.tools, # type: ignore # Argument "tools" to "ToolUsage" has incompatible type "Sequence[BaseTool]"; expected "list[BaseTool]"
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task,
agent=self.crew_agent,
action=agent_action,
)
tool_calling = tool_usage.parse(agent_action.log)
if isinstance(tool_calling, ToolUsageErrorException):
observation = tool_calling.message
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in name_to_tool_map
]:
observation = tool_usage.use(tool_calling, agent_action.log)
else:
observation = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
yield AgentStep(action=agent_action, observation=observation)
def _handle_crew_training_output(
self, output: AgentFinish, human_feedback: str | None = None
) -> None:
"""Function to handle the process of the training data."""
agent_id = str(self.crew_agent.id)
if (
CrewTrainingHandler(TRAINING_DATA_FILE).load()
and not self.should_ask_for_human_input
):
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
if training_data.get(agent_id):
training_data[agent_id][self.crew._train_iteration][
"improved_output"
] = output.return_values["output"]
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
if self.should_ask_for_human_input and human_feedback is not None:
training_data = {
"initial_output": output.return_values["output"],
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.crew_agent.role,
}
CrewTrainingHandler(TRAINING_DATA_FILE).append(
self.crew._train_iteration, agent_id, training_data
)

View File

@@ -1,6 +1,10 @@
import re import re
from typing import Any, Union from typing import Any, Union
from json_repair import repair_json from json_repair import repair_json
from langchain.agents.output_parsers import ReActSingleInputOutputParser
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.exceptions import OutputParserException
from crewai.utilities import I18N from crewai.utilities import I18N
@@ -10,39 +14,7 @@ MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = "I did it wrong. Invalid Forma
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other" FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
class AgentAction: class CrewAgentParser(ReActSingleInputOutputParser):
thought: str
tool: str
tool_input: str
text: str
result: str
def __init__(self, thought: str, tool: str, tool_input: str, text: str):
self.thought = thought
self.tool = tool
self.tool_input = tool_input
self.text = text
class AgentFinish:
thought: str
output: str
text: str
def __init__(self, thought: str, output: str, text: str):
self.thought = thought
self.output = output
self.text = text
class OutputParserException(Exception):
error: str
def __init__(self, error: str):
self.error = error
class CrewAgentParser:
"""Parses ReAct-style LLM calls that have a single tool input. """Parses ReAct-style LLM calls that have a single tool input.
Expects output to be in one of two formats. Expects output to be in one of two formats.
@@ -66,11 +38,7 @@ class CrewAgentParser:
_i18n: I18N = I18N() _i18n: I18N = I18N()
agent: Any = None agent: Any = None
def __init__(self, agent: Any):
self.agent = agent
def parse(self, text: str) -> Union[AgentAction, AgentFinish]: def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
thought = self._extract_thought(text)
includes_answer = FINAL_ANSWER_ACTION in text includes_answer = FINAL_ANSWER_ACTION in text
regex = ( regex = (
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
@@ -79,7 +47,7 @@ class CrewAgentParser:
if action_match: if action_match:
if includes_answer: if includes_answer:
raise OutputParserException( raise OutputParserException(
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}" f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}"
) )
action = action_match.group(1) action = action_match.group(1)
clean_action = self._clean_action(action) clean_action = self._clean_action(action)
@@ -89,23 +57,30 @@ class CrewAgentParser:
tool_input = action_input.strip(" ").strip('"') tool_input = action_input.strip(" ").strip('"')
safe_tool_input = self._safe_repair_json(tool_input) safe_tool_input = self._safe_repair_json(tool_input)
return AgentAction(thought, clean_action, safe_tool_input, text) return AgentAction(clean_action, safe_tool_input, text)
elif includes_answer: elif includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip() return AgentFinish(
return AgentFinish(thought, final_answer, text) {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text
)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
self.agent.increment_formatting_errors() self.agent.increment_formatting_errors()
raise OutputParserException( raise OutputParserException(
f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}", f"Could not parse LLM output: `{text}`",
observation=f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
llm_output=text,
send_to_llm=True,
) )
elif not re.search( elif not re.search(
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL
): ):
self.agent.increment_formatting_errors() self.agent.increment_formatting_errors()
raise OutputParserException( raise OutputParserException(
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, f"Could not parse LLM output: `{text}`",
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
llm_output=text,
send_to_llm=True,
) )
else: else:
format = self._i18n.slice("format_without_tools") format = self._i18n.slice("format_without_tools")
@@ -113,15 +88,11 @@ class CrewAgentParser:
self.agent.increment_formatting_errors() self.agent.increment_formatting_errors()
raise OutputParserException( raise OutputParserException(
error, error,
observation=error,
llm_output=text,
send_to_llm=True,
) )
def _extract_thought(self, text: str) -> str:
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
thought_match = re.search(regex, text, re.DOTALL)
if thought_match:
return thought_match.group(1).strip()
return ""
def _clean_action(self, text: str) -> str: def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters.""" """Clean action string by removing non-essential formatting characters."""
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip() return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()

View File

@@ -1,3 +0,0 @@
from .main import AuthenticationCommand
__all__ = ["AuthenticationCommand"]

View File

@@ -1,4 +0,0 @@
ALGORITHMS = ["RS256"]
AUTH0_DOMAIN = "crewai.us.auth0.com"
AUTH0_CLIENT_ID = "DEVC5Fw6NlRoSzmDCcOhVq85EfLBjKa8"
AUTH0_AUDIENCE = "https://crewai.us.auth0.com/api/v2/"

View File

@@ -1,75 +0,0 @@
import time
import webbrowser
from typing import Any, Dict
import requests
from rich.console import Console
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
from .utils import TokenManager, validate_token
console = Console()
class AuthenticationCommand:
DEVICE_CODE_URL = f"https://{AUTH0_DOMAIN}/oauth/device/code"
TOKEN_URL = f"https://{AUTH0_DOMAIN}/oauth/token"
def __init__(self):
self.token_manager = TokenManager()
def signup(self) -> None:
"""Sign up to CrewAI+"""
console.print("Signing Up to CrewAI+ \n", style="bold blue")
device_code_data = self._get_device_code()
self._display_auth_instructions(device_code_data)
return self._poll_for_token(device_code_data)
def _get_device_code(self) -> Dict[str, Any]:
"""Get the device code to authenticate the user."""
device_code_payload = {
"client_id": AUTH0_CLIENT_ID,
"scope": "openid",
"audience": AUTH0_AUDIENCE,
}
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
response.raise_for_status()
return response.json()
def _display_auth_instructions(self, device_code_data: Dict[str, str]) -> None:
"""Display the authentication instructions to the user."""
console.print("1. Navigate to: ", device_code_data["verification_uri_complete"])
console.print("2. Enter the following code: ", device_code_data["user_code"])
webbrowser.open(device_code_data["verification_uri_complete"])
def _poll_for_token(self, device_code_data: Dict[str, Any]) -> None:
"""Poll the server for the token."""
token_payload = {
"grant_type": "urn:ietf:params:oauth:grant-type:device_code",
"device_code": device_code_data["device_code"],
"client_id": AUTH0_CLIENT_ID,
}
attempts = 0
while True and attempts < 5:
response = requests.post(self.TOKEN_URL, data=token_payload)
token_data = response.json()
if response.status_code == 200:
validate_token(token_data["id_token"])
expires_in = 360000 # Token expiration time in seconds
self.token_manager.save_tokens(token_data["access_token"], expires_in)
console.print("\nWelcome to CrewAI+ !!", style="green")
return
if token_data["error"] not in ("authorization_pending", "slow_down"):
raise requests.HTTPError(token_data["error_description"])
time.sleep(device_code_data["interval"])
attempts += 1
console.print(
"Timeout: Failed to get the token. Please try again.", style="bold red"
)

View File

@@ -1,144 +0,0 @@
import json
import os
import sys
from datetime import datetime, timedelta
from pathlib import Path
from typing import Optional
from auth0.authentication.token_verifier import (
AsymmetricSignatureVerifier,
TokenVerifier,
)
from cryptography.fernet import Fernet
from .constants import AUTH0_CLIENT_ID, AUTH0_DOMAIN
def validate_token(id_token: str) -> None:
"""
Verify the token and its precedence
:param id_token:
"""
jwks_url = f"https://{AUTH0_DOMAIN}/.well-known/jwks.json"
issuer = f"https://{AUTH0_DOMAIN}/"
signature_verifier = AsymmetricSignatureVerifier(jwks_url)
token_verifier = TokenVerifier(
signature_verifier=signature_verifier, issuer=issuer, audience=AUTH0_CLIENT_ID
)
token_verifier.verify(id_token)
class TokenManager:
def __init__(self, file_path: str = "tokens.enc") -> None:
"""
Initialize the TokenManager class.
:param file_path: The file path to store the encrypted tokens. Default is "tokens.enc".
"""
self.file_path = file_path
self.key = self._get_or_create_key()
self.fernet = Fernet(self.key)
def _get_or_create_key(self) -> bytes:
"""
Get or create the encryption key.
:return: The encryption key.
"""
key_filename = "secret.key"
key = self.read_secure_file(key_filename)
if key is not None:
return key
new_key = Fernet.generate_key()
self.save_secure_file(key_filename, new_key)
return new_key
def save_tokens(self, access_token: str, expires_in: int) -> None:
"""
Save the access token and its expiration time.
:param access_token: The access token to save.
:param expires_in: The expiration time of the access token in seconds.
"""
expiration_time = datetime.now() + timedelta(seconds=expires_in)
data = {
"access_token": access_token,
"expiration": expiration_time.isoformat(),
}
encrypted_data = self.fernet.encrypt(json.dumps(data).encode())
self.save_secure_file(self.file_path, encrypted_data)
def get_token(self) -> Optional[str]:
"""
Get the access token if it is valid and not expired.
:return: The access token if valid and not expired, otherwise None.
"""
encrypted_data = self.read_secure_file(self.file_path)
decrypted_data = self.fernet.decrypt(encrypted_data) # type: ignore
data = json.loads(decrypted_data)
expiration = datetime.fromisoformat(data["expiration"])
if expiration <= datetime.now():
return None
return data["access_token"]
def get_secure_storage_path(self) -> Path:
"""
Get the secure storage path based on the operating system.
:return: The secure storage path.
"""
if sys.platform == "win32":
# Windows: Use %LOCALAPPDATA%
base_path = os.environ.get("LOCALAPPDATA")
elif sys.platform == "darwin":
# macOS: Use ~/Library/Application Support
base_path = os.path.expanduser("~/Library/Application Support")
else:
# Linux and other Unix-like: Use ~/.local/share
base_path = os.path.expanduser("~/.local/share")
app_name = "crewai/credentials"
storage_path = Path(base_path) / app_name
storage_path.mkdir(parents=True, exist_ok=True)
return storage_path
def save_secure_file(self, filename: str, content: bytes) -> None:
"""
Save the content to a secure file.
:param filename: The name of the file.
:param content: The content to save.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
with open(file_path, "wb") as f:
f.write(content)
# Set appropriate permissions (read/write for owner only)
os.chmod(file_path, 0o600)
def read_secure_file(self, filename: str) -> Optional[bytes]:
"""
Read the content of a secure file.
:param filename: The name of the file.
:return: The content of the file if it exists, otherwise None.
"""
storage_path = self.get_secure_storage_path()
file_path = storage_path / filename
if not file_path.exists():
return None
with open(file_path, "rb") as f:
return f.read()

View File

@@ -1,26 +1,14 @@
from typing import Optional
import click import click
import pkg_resources import pkg_resources
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.create_pipeline import create_pipeline
from crewai.memory.storage.kickoff_task_outputs_storage import ( from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage, KickoffTaskOutputsSQLiteStorage,
) )
from .authentication.main import AuthenticationCommand
from .deploy.main import DeployCommand from .create_crew import create_crew
from .evaluate_crew import evaluate_crew
from .install_crew import install_crew
from .plot_flow import plot_flow
from .replay_from_task import replay_task_command
from .reset_memories_command import reset_memories_command
from .run_crew import run_crew
from .run_flow import run_flow
from .tools.main import ToolCommand
from .train_crew import train_crew from .train_crew import train_crew
from .replay_from_task import replay_task_command
@click.group() @click.group()
@@ -29,20 +17,10 @@ def crewai():
@crewai.command() @crewai.command()
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"])) @click.argument("project_name")
@click.argument("name") def create(project_name):
def create(type, name): """Create a new crew."""
"""Create a new crew, pipeline, or flow.""" create_crew(project_name)
if type == "crew":
create_crew(name)
elif type == "pipeline":
create_pipeline(name)
elif type == "flow":
create_flow(name)
else:
click.secho(
"Error: Invalid type. Must be 'crew', 'pipeline', or 'flow'.", fg="red"
)
@crewai.command() @crewai.command()
@@ -70,17 +48,10 @@ def version(tools):
default=5, default=5,
help="Number of iterations to train the crew", help="Number of iterations to train the crew",
) )
@click.option( def train(n_iterations: int):
"-f",
"--filename",
type=str,
default="trained_agents_data.pkl",
help="Path to a custom file for training",
)
def train(n_iterations: int, filename: str):
"""Train the crew.""" """Train the crew."""
click.echo(f"Training the Crew for {n_iterations} iterations") click.echo(f"Training the crew for {n_iterations} iterations")
train_crew(n_iterations, filename) train_crew(n_iterations)
@crewai.command() @crewai.command()
@@ -128,172 +99,5 @@ def log_tasks_outputs() -> None:
click.echo(f"An error occurred while logging task outputs: {e}", err=True) click.echo(f"An error occurred while logging task outputs: {e}", err=True)
@crewai.command()
@click.option("-l", "--long", is_flag=True, help="Reset LONG TERM memory")
@click.option("-s", "--short", is_flag=True, help="Reset SHORT TERM memory")
@click.option("-e", "--entities", is_flag=True, help="Reset ENTITIES memory")
@click.option(
"-k",
"--kickoff-outputs",
is_flag=True,
help="Reset LATEST KICKOFF TASK OUTPUTS",
)
@click.option("-a", "--all", is_flag=True, help="Reset ALL memories")
def reset_memories(long, short, entities, kickoff_outputs, all):
"""
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs). This will delete all the data saved.
"""
try:
if not all and not (long or short or entities or kickoff_outputs):
click.echo(
"Please specify at least one memory type to reset using the appropriate flags."
)
return
reset_memories_command(long, short, entities, kickoff_outputs, all)
except Exception as e:
click.echo(f"An error occurred while resetting memories: {e}", err=True)
@crewai.command()
@click.option(
"-n",
"--n_iterations",
type=int,
default=3,
help="Number of iterations to Test the crew",
)
@click.option(
"-m",
"--model",
type=str,
default="gpt-4o-mini",
help="LLM Model to run the tests on the Crew. For now only accepting only OpenAI models.",
)
def test(n_iterations: int, model: str):
"""Test the crew and evaluate the results."""
click.echo(f"Testing the crew for {n_iterations} iterations with model {model}")
evaluate_crew(n_iterations, model)
@crewai.command()
def install():
"""Install the Crew."""
install_crew()
@crewai.command()
def run():
"""Run the Crew."""
click.echo("Running the Crew")
run_crew()
@crewai.command()
def signup():
"""Sign Up/Login to CrewAI+."""
AuthenticationCommand().signup()
@crewai.command()
def login():
"""Sign Up/Login to CrewAI+."""
AuthenticationCommand().signup()
# DEPLOY CREWAI+ COMMANDS
@crewai.group()
def deploy():
"""Deploy the Crew CLI group."""
pass
@crewai.group()
def tool():
"""Tool Repository related commands."""
pass
@deploy.command(name="create")
@click.option("-y", "--yes", is_flag=True, help="Skip the confirmation prompt")
def deploy_create(yes: bool):
"""Create a Crew deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.create_crew(yes)
@deploy.command(name="list")
def deploy_list():
"""List all deployments."""
deploy_cmd = DeployCommand()
deploy_cmd.list_crews()
@deploy.command(name="push")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deploy_push(uuid: Optional[str]):
"""Deploy the Crew."""
deploy_cmd = DeployCommand()
deploy_cmd.deploy(uuid=uuid)
@deploy.command(name="status")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deply_status(uuid: Optional[str]):
"""Get the status of a deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.get_crew_status(uuid=uuid)
@deploy.command(name="logs")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deploy_logs(uuid: Optional[str]):
"""Get the logs of a deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.get_crew_logs(uuid=uuid)
@deploy.command(name="remove")
@click.option("-u", "--uuid", type=str, help="Crew UUID parameter")
def deploy_remove(uuid: Optional[str]):
"""Remove a deployment."""
deploy_cmd = DeployCommand()
deploy_cmd.remove_crew(uuid=uuid)
@tool.command(name="install")
@click.argument("handle")
def tool_install(handle: str):
tool_cmd = ToolCommand()
tool_cmd.install(handle)
@tool.command(name="publish")
@click.option("--public", "is_public", flag_value=True, default=False)
@click.option("--private", "is_public", flag_value=False)
def tool_publish(is_public: bool):
tool_cmd = ToolCommand()
tool_cmd.publish(is_public)
@crewai.group()
def flow():
"""Flow related commands."""
pass
@flow.command(name="run")
def flow_run():
"""Run the Flow."""
click.echo("Running the Flow")
run_flow()
@flow.command(name="plot")
def flow_plot():
"""Plot the Flow."""
click.echo("Plotting the Flow")
plot_flow()
if __name__ == "__main__": if __name__ == "__main__":
crewai() crewai()

View File

@@ -1,40 +0,0 @@
from typing import Dict, Any
from rich.console import Console
from crewai.cli.plus_api import PlusAPI
from crewai.cli.utils import get_auth_token
from crewai.telemetry.telemetry import Telemetry
console = Console()
class BaseCommand:
def __init__(self):
self._telemetry = Telemetry()
self._telemetry.set_tracer()
class PlusAPIMixin:
def __init__(self, telemetry):
try:
telemetry.set_tracer()
self.plus_api_client = PlusAPI(api_key=get_auth_token())
except Exception:
self._deploy_signup_error_span = telemetry.deploy_signup_error_span()
console.print(
"Please sign up/login to CrewAI+ before using the CLI.",
style="bold red",
)
console.print("Run 'crewai signup' to sign up/login.", style="bold green")
raise SystemExit
def _handle_plus_api_error(self, json_response: Dict[str, Any]) -> None:
"""
Handle and display error messages from API responses.
Args:
json_response (Dict[str, Any]): The JSON response containing error information.
"""
error = json_response.get("error", "Unknown error")
message = json_response.get("message", "No message provided")
console.print(f"Error: {error}", style="bold red")
console.print(f"Message: {message}", style="bold red")

View File

@@ -1,35 +1,25 @@
import os
from pathlib import Path from pathlib import Path
import click import click
from crewai.cli.utils import copy_template
def create_crew(name):
def create_crew(name, parent_folder=None):
"""Create a new crew.""" """Create a new crew."""
folder_name = name.replace(" ", "_").replace("-", "_").lower() folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "") class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
if parent_folder: click.secho(f"Creating folder {folder_name}...", fg="green", bold=True)
folder_path = Path(parent_folder) / folder_name
else:
folder_path = Path(folder_name)
click.secho( if not os.path.exists(folder_name):
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...", os.mkdir(folder_name)
fg="green", os.mkdir(folder_name + "/tests")
bold=True, os.mkdir(folder_name + "/src")
) os.mkdir(folder_name + f"/src/{folder_name}")
os.mkdir(folder_name + f"/src/{folder_name}/tools")
if not folder_path.exists(): os.mkdir(folder_name + f"/src/{folder_name}/config")
folder_path.mkdir(parents=True) with open(folder_name + "/.env", "w") as file:
(folder_path / "tests").mkdir(exist_ok=True) file.write("OPENAI_API_KEY=YOUR_API_KEY")
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
with open(folder_path / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
else: else:
click.secho( click.secho(
f"\tFolder {folder_name} already exists. Please choose a different name.", f"\tFolder {folder_name} already exists. Please choose a different name.",
@@ -38,34 +28,53 @@ def create_crew(name, parent_folder=None):
return return
package_dir = Path(__file__).parent package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "crew" templates_dir = package_dir / "templates"
# List of template files to copy # List of template files to copy
root_template_files = ( root_template_files = [
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else [] ".gitignore",
) "pyproject.toml",
"README.md",
]
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"] tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"] config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
src_template_files = ( src_template_files = ["__init__.py", "main.py", "crew.py"]
["__init__.py", "main.py", "crew.py"] if not parent_folder else ["crew.py"]
)
for file_name in root_template_files: for file_name in root_template_files:
src_file = templates_dir / file_name src_file = templates_dir / file_name
dst_file = folder_path / file_name dst_file = Path(folder_name) / file_name
copy_template(src_file, dst_file, name, class_name, folder_name) copy_template(src_file, dst_file, name, class_name, folder_name)
src_folder = folder_path / "src" / folder_name if not parent_folder else folder_path
for file_name in src_template_files: for file_name in src_template_files:
src_file = templates_dir / file_name src_file = templates_dir / file_name
dst_file = src_folder / file_name dst_file = Path(folder_name) / "src" / folder_name / file_name
copy_template(src_file, dst_file, name, class_name, folder_name) copy_template(src_file, dst_file, name, class_name, folder_name)
if not parent_folder: for file_name in tools_template_files:
for file_name in tools_template_files + config_template_files: src_file = templates_dir / file_name
src_file = templates_dir / file_name dst_file = Path(folder_name) / "src" / folder_name / file_name
dst_file = src_folder / file_name copy_template(src_file, dst_file, name, class_name, folder_name)
copy_template(src_file, dst_file, name, class_name, folder_name)
for file_name in config_template_files:
src_file = templates_dir / file_name
dst_file = Path(folder_name) / "src" / folder_name / file_name
copy_template(src_file, dst_file, name, class_name, folder_name)
click.secho(f"Crew {name} created successfully!", fg="green", bold=True) click.secho(f"Crew {name} created successfully!", fg="green", bold=True)
def copy_template(src, dst, name, class_name, folder_name):
"""Copy a file from src to dst."""
with open(src, "r") as file:
content = file.read()
# Interpolate the content
content = content.replace("{{name}}", name)
content = content.replace("{{crew_name}}", class_name)
content = content.replace("{{folder_name}}", folder_name)
# Write the interpolated content to the new file
with open(dst, "w") as file:
file.write(content)
click.secho(f" - Created {dst}", fg="green")

View File

@@ -1,93 +0,0 @@
from pathlib import Path
import click
def create_flow(name):
"""Create a new flow."""
folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
click.secho(f"Creating flow {folder_name}...", fg="green", bold=True)
project_root = Path(folder_name)
if project_root.exists():
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
return
# Create directory structure
(project_root / "src" / folder_name).mkdir(parents=True)
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
(project_root / "tests").mkdir(exist_ok=True)
# Create .env file
with open(project_root / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "flow"
# List of template files to copy
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
src_template_files = ["__init__.py", "main.py"]
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
crew_folders = [
"poem_crew",
]
def process_file(src_file, dst_file):
if src_file.suffix in [".pyc", ".pyo", ".pyd"]:
return
try:
with open(src_file, "r", encoding="utf-8") as file:
content = file.read()
except Exception as e:
click.secho(f"Error processing file {src_file}: {e}", fg="red")
return
content = content.replace("{{name}}", name)
content = content.replace("{{flow_name}}", class_name)
content = content.replace("{{folder_name}}", folder_name)
with open(dst_file, "w") as file:
file.write(content)
# Copy and process root template files
for file_name in root_template_files:
src_file = templates_dir / file_name
dst_file = project_root / file_name
process_file(src_file, dst_file)
# Copy and process src template files
for file_name in src_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy tools files
for file_name in tools_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy crew folders
for crew_folder in crew_folders:
src_crew_folder = templates_dir / "crews" / crew_folder
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
if src_crew_folder.exists():
for src_file in src_crew_folder.rglob("*"):
if src_file.is_file():
relative_path = src_file.relative_to(src_crew_folder)
dst_file = dst_crew_folder / relative_path
dst_file.parent.mkdir(parents=True, exist_ok=True)
process_file(src_file, dst_file)
else:
click.secho(
f"Warning: Crew folder {crew_folder} not found in template.",
fg="yellow",
)
click.secho(f"Flow {name} created successfully!", fg="green", bold=True)

View File

@@ -1,107 +0,0 @@
import shutil
from pathlib import Path
import click
def create_pipeline(name, router=False):
"""Create a new pipeline project."""
folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
click.secho(f"Creating pipeline {folder_name}...", fg="green", bold=True)
project_root = Path(folder_name)
if project_root.exists():
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
return
# Create directory structure
(project_root / "src" / folder_name).mkdir(parents=True)
(project_root / "src" / folder_name / "pipelines").mkdir(parents=True)
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
(project_root / "tests").mkdir(exist_ok=True)
# Create .env file
with open(project_root / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
package_dir = Path(__file__).parent
template_folder = "pipeline_router" if router else "pipeline"
templates_dir = package_dir / "templates" / template_folder
# List of template files to copy
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
src_template_files = ["__init__.py", "main.py"]
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
if router:
crew_folders = [
"classifier_crew",
"normal_crew",
"urgent_crew",
]
pipelines_folders = [
"pipelines/__init__.py",
"pipelines/pipeline_classifier.py",
"pipelines/pipeline_normal.py",
"pipelines/pipeline_urgent.py",
]
else:
crew_folders = [
"research_crew",
"write_linkedin_crew",
"write_x_crew",
]
pipelines_folders = ["pipelines/__init__.py", "pipelines/pipeline.py"]
def process_file(src_file, dst_file):
with open(src_file, "r") as file:
content = file.read()
content = content.replace("{{name}}", name)
content = content.replace("{{crew_name}}", class_name)
content = content.replace("{{folder_name}}", folder_name)
content = content.replace("{{pipeline_name}}", class_name)
with open(dst_file, "w") as file:
file.write(content)
# Copy and process root template files
for file_name in root_template_files:
src_file = templates_dir / file_name
dst_file = project_root / file_name
process_file(src_file, dst_file)
# Copy and process src template files
for file_name in src_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy tools files
for file_name in tools_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
shutil.copy(src_file, dst_file)
# Copy pipelines folders
for file_name in pipelines_folders:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy crew folders
for crew_folder in crew_folders:
src_crew_folder = templates_dir / "crews" / crew_folder
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
if src_crew_folder.exists():
shutil.copytree(src_crew_folder, dst_crew_folder)
else:
click.secho(
f"Warning: Crew folder {crew_folder} not found in template.",
fg="yellow",
)
click.secho(f"Pipeline {name} created successfully!", fg="green", bold=True)

View File

@@ -1,286 +0,0 @@
from typing import Any, Dict, List, Optional
from rich.console import Console
from crewai.cli.command import BaseCommand, PlusAPIMixin
from crewai.cli.utils import (
fetch_and_json_env_file,
get_git_remote_url,
get_project_name,
)
console = Console()
class DeployCommand(BaseCommand, PlusAPIMixin):
"""
A class to handle deployment-related operations for CrewAI projects.
"""
def __init__(self):
"""
Initialize the DeployCommand with project name and API client.
"""
BaseCommand.__init__(self)
PlusAPIMixin.__init__(self, telemetry=self._telemetry)
self.project_name = get_project_name(require=True)
def _standard_no_param_error_message(self) -> None:
"""
Display a standard error message when no UUID or project name is available.
"""
console.print(
"No UUID provided, project pyproject.toml not found or with error.",
style="bold red",
)
def _display_deployment_info(self, json_response: Dict[str, Any]) -> None:
"""
Display deployment information.
Args:
json_response (Dict[str, Any]): The deployment information to display.
"""
console.print("Deploying the crew...\n", style="bold blue")
for key, value in json_response.items():
console.print(f"{key.title()}: [green]{value}[/green]")
console.print("\nTo check the status of the deployment, run:")
console.print("crewai deploy status")
console.print(" or")
console.print(f"crewai deploy status --uuid \"{json_response['uuid']}\"")
def _display_logs(self, log_messages: List[Dict[str, Any]]) -> None:
"""
Display log messages.
Args:
log_messages (List[Dict[str, Any]]): The log messages to display.
"""
for log_message in log_messages:
console.print(
f"{log_message['timestamp']} - {log_message['level']}: {log_message['message']}"
)
def deploy(self, uuid: Optional[str] = None) -> None:
"""
Deploy a crew using either UUID or project name.
Args:
uuid (Optional[str]): The UUID of the crew to deploy.
"""
self._start_deployment_span = self._telemetry.start_deployment_span(uuid)
console.print("Starting deployment...", style="bold blue")
if uuid:
response = self.plus_api_client.deploy_by_uuid(uuid)
elif self.project_name:
response = self.plus_api_client.deploy_by_name(self.project_name)
else:
self._standard_no_param_error_message()
return
json_response = response.json()
if response.status_code == 200:
self._display_deployment_info(json_response)
else:
self._handle_plus_api_error(json_response)
def create_crew(self, confirm: bool = False) -> None:
"""
Create a new crew deployment.
"""
self._create_crew_deployment_span = (
self._telemetry.create_crew_deployment_span()
)
console.print("Creating deployment...", style="bold blue")
env_vars = fetch_and_json_env_file()
remote_repo_url = get_git_remote_url()
if remote_repo_url is None:
console.print("No remote repository URL found.", style="bold red")
console.print(
"Please ensure your project has a valid remote repository.",
style="yellow",
)
return
self._confirm_input(env_vars, remote_repo_url, confirm)
payload = self._create_payload(env_vars, remote_repo_url)
response = self.plus_api_client.create_crew(payload)
if response.status_code == 201:
self._display_creation_success(response.json())
else:
self._handle_plus_api_error(response.json())
def _confirm_input(
self, env_vars: Dict[str, str], remote_repo_url: str, confirm: bool
) -> None:
"""
Confirm input parameters with the user.
Args:
env_vars (Dict[str, str]): Environment variables.
remote_repo_url (str): Remote repository URL.
confirm (bool): Whether to confirm input.
"""
if not confirm:
input(f"Press Enter to continue with the following Env vars: {env_vars}")
input(
f"Press Enter to continue with the following remote repository: {remote_repo_url}\n"
)
def _create_payload(
self,
env_vars: Dict[str, str],
remote_repo_url: str,
) -> Dict[str, Any]:
"""
Create the payload for crew creation.
Args:
remote_repo_url (str): Remote repository URL.
env_vars (Dict[str, str]): Environment variables.
Returns:
Dict[str, Any]: The payload for crew creation.
"""
return {
"deploy": {
"name": self.project_name,
"repo_clone_url": remote_repo_url,
"env": env_vars,
}
}
def _display_creation_success(self, json_response: Dict[str, Any]) -> None:
"""
Display success message after crew creation.
Args:
json_response (Dict[str, Any]): The response containing crew information.
"""
console.print("Deployment created successfully!\n", style="bold green")
console.print(
f"Name: {self.project_name} ({json_response['uuid']})", style="bold green"
)
console.print(f"Status: {json_response['status']}", style="bold green")
console.print("\nTo (re)deploy the crew, run:")
console.print("crewai deploy push")
console.print(" or")
console.print(f"crewai deploy push --uuid {json_response['uuid']}")
def list_crews(self) -> None:
"""
List all available crews.
"""
console.print("Listing all Crews\n", style="bold blue")
response = self.plus_api_client.list_crews()
json_response = response.json()
if response.status_code == 200:
self._display_crews(json_response)
else:
self._display_no_crews_message()
def _display_crews(self, crews_data: List[Dict[str, Any]]) -> None:
"""
Display the list of crews.
Args:
crews_data (List[Dict[str, Any]]): List of crew data to display.
"""
for crew_data in crews_data:
console.print(
f"- {crew_data['name']} ({crew_data['uuid']}) [blue]{crew_data['status']}[/blue]"
)
def _display_no_crews_message(self) -> None:
"""
Display a message when no crews are available.
"""
console.print("You don't have any Crews yet. Let's create one!", style="yellow")
console.print(" crewai create crew <crew_name>", style="green")
def get_crew_status(self, uuid: Optional[str] = None) -> None:
"""
Get the status of a crew.
Args:
uuid (Optional[str]): The UUID of the crew to check.
"""
console.print("Fetching deployment status...", style="bold blue")
if uuid:
response = self.plus_api_client.crew_status_by_uuid(uuid)
elif self.project_name:
response = self.plus_api_client.crew_status_by_name(self.project_name)
else:
self._standard_no_param_error_message()
return
json_response = response.json()
if response.status_code == 200:
self._display_crew_status(json_response)
else:
self._handle_plus_api_error(json_response)
def _display_crew_status(self, status_data: Dict[str, str]) -> None:
"""
Display the status of a crew.
Args:
status_data (Dict[str, str]): The status data to display.
"""
console.print(f"Name:\t {status_data['name']}")
console.print(f"Status:\t {status_data['status']}")
def get_crew_logs(self, uuid: Optional[str], log_type: str = "deployment") -> None:
"""
Get logs for a crew.
Args:
uuid (Optional[str]): The UUID of the crew to get logs for.
log_type (str): The type of logs to retrieve (default: "deployment").
"""
self._get_crew_logs_span = self._telemetry.get_crew_logs_span(uuid, log_type)
console.print(f"Fetching {log_type} logs...", style="bold blue")
if uuid:
response = self.plus_api_client.crew_by_uuid(uuid, log_type)
elif self.project_name:
response = self.plus_api_client.crew_by_name(self.project_name, log_type)
else:
self._standard_no_param_error_message()
return
if response.status_code == 200:
self._display_logs(response.json())
else:
self._handle_plus_api_error(response.json())
def remove_crew(self, uuid: Optional[str]) -> None:
"""
Remove a crew deployment.
Args:
uuid (Optional[str]): The UUID of the crew to remove.
"""
self._remove_crew_span = self._telemetry.remove_crew_span(uuid)
console.print("Removing deployment...", style="bold blue")
if uuid:
response = self.plus_api_client.delete_crew_by_uuid(uuid)
elif self.project_name:
response = self.plus_api_client.delete_crew_by_name(self.project_name)
else:
self._standard_no_param_error_message()
return
if response.status_code == 204:
console.print(
f"Crew '{self.project_name}' removed successfully.", style="green"
)
else:
console.print(
f"Failed to remove crew '{self.project_name}'", style="bold red"
)

View File

@@ -1,30 +0,0 @@
import subprocess
import click
def evaluate_crew(n_iterations: int, model: str) -> None:
"""
Test and Evaluate the crew by running a command in the Poetry environment.
Args:
n_iterations (int): The number of iterations to test the crew.
model (str): The model to test the crew with.
"""
command = ["poetry", "run", "test", str(n_iterations), model]
try:
if n_iterations <= 0:
raise ValueError("The number of iterations must be a positive integer.")
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while testing the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -1,21 +0,0 @@
import subprocess
import click
def install_crew() -> None:
"""
Install the crew by running the Poetry command to lock and install.
"""
try:
subprocess.run(["poetry", "lock"], check=True, capture_output=False, text=True)
subprocess.run(
["poetry", "install"], check=True, capture_output=False, text=True
)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -1,23 +0,0 @@
import subprocess
import click
def plot_flow() -> None:
"""
Plot the flow by running a command in the Poetry environment.
"""
command = ["poetry", "run", "plot_flow"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while plotting the flow: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -1,92 +0,0 @@
from typing import Optional
import requests
from os import getenv
from crewai.cli.utils import get_crewai_version
from urllib.parse import urljoin
class PlusAPI:
"""
This class exposes methods for working with the CrewAI+ API.
"""
TOOLS_RESOURCE = "/crewai_plus/api/v1/tools"
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
def __init__(self, api_key: str) -> None:
self.api_key = api_key
self.headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
"User-Agent": f"CrewAI-CLI/{get_crewai_version()}",
"X-Crewai-Version": get_crewai_version(),
}
self.base_url = getenv("CREWAI_BASE_URL", "https://app.crewai.com")
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
url = urljoin(self.base_url, endpoint)
return requests.request(method, url, headers=self.headers, **kwargs)
def get_tool(self, handle: str):
return self._make_request("GET", f"{self.TOOLS_RESOURCE}/{handle}")
def publish_tool(
self,
handle: str,
is_public: bool,
version: str,
description: Optional[str],
encoded_file: str,
):
params = {
"handle": handle,
"public": is_public,
"version": version,
"file": encoded_file,
"description": description,
}
return self._make_request("POST", f"{self.TOOLS_RESOURCE}", json=params)
def deploy_by_name(self, project_name: str) -> requests.Response:
return self._make_request(
"POST", f"{self.CREWS_RESOURCE}/by-name/{project_name}/deploy"
)
def deploy_by_uuid(self, uuid: str) -> requests.Response:
return self._make_request("POST", f"{self.CREWS_RESOURCE}/{uuid}/deploy")
def crew_status_by_name(self, project_name: str) -> requests.Response:
return self._make_request(
"GET", f"{self.CREWS_RESOURCE}/by-name/{project_name}/status"
)
def crew_status_by_uuid(self, uuid: str) -> requests.Response:
return self._make_request("GET", f"{self.CREWS_RESOURCE}/{uuid}/status")
def crew_by_name(
self, project_name: str, log_type: str = "deployment"
) -> requests.Response:
return self._make_request(
"GET", f"{self.CREWS_RESOURCE}/by-name/{project_name}/logs/{log_type}"
)
def crew_by_uuid(
self, uuid: str, log_type: str = "deployment"
) -> requests.Response:
return self._make_request(
"GET", f"{self.CREWS_RESOURCE}/{uuid}/logs/{log_type}"
)
def delete_crew_by_name(self, project_name: str) -> requests.Response:
return self._make_request(
"DELETE", f"{self.CREWS_RESOURCE}/by-name/{project_name}"
)
def delete_crew_by_uuid(self, uuid: str) -> requests.Response:
return self._make_request("DELETE", f"{self.CREWS_RESOURCE}/{uuid}")
def list_crews(self) -> requests.Response:
return self._make_request("GET", self.CREWS_RESOURCE)
def create_crew(self, payload) -> requests.Response:
return self._make_request("POST", self.CREWS_RESOURCE, json=payload)

View File

@@ -1,49 +0,0 @@
import subprocess
import click
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
"""
Reset the crew memories.
Args:
long (bool): Whether to reset the long-term memory.
short (bool): Whether to reset the short-term memory.
entity (bool): Whether to reset the entity memory.
kickoff_outputs (bool): Whether to reset the latest kickoff task outputs.
all (bool): Whether to reset all memories.
"""
try:
if all:
ShortTermMemory().reset()
EntityMemory().reset()
LongTermMemory().reset()
TaskOutputStorageHandler().reset()
click.echo("All memories have been reset.")
else:
if long:
LongTermMemory().reset()
click.echo("Long term memory has been reset.")
if short:
ShortTermMemory().reset()
click.echo("Short term memory has been reset.")
if entity:
EntityMemory().reset()
click.echo("Entity memory has been reset.")
if kickoff_outputs:
TaskOutputStorageHandler().reset()
click.echo("Latest Kickoff outputs stored has been reset.")
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while resetting the memories: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -1,23 +0,0 @@
import subprocess
import click
def run_crew() -> None:
"""
Run the crew by running a command in the Poetry environment.
"""
command = ["poetry", "run", "run_crew"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -1,23 +0,0 @@
import subprocess
import click
def run_flow() -> None:
"""
Run the flow by running a command in the Poetry environment.
"""
command = ["poetry", "run", "run_flow"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the flow: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -16,7 +16,10 @@ Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and then install them: 1. First lock the dependencies and then install them:
```bash ```bash
crewai install poetry lock
```
```bash
poetry install
``` ```
### Customizing ### Customizing
@@ -32,7 +35,7 @@ crewai install
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project: To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash ```bash
crewai run poetry run {{folder_name}}
``` ```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration. This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.

View File

@@ -5,7 +5,6 @@ research_task:
the current year is 2024. the current year is 2024.
expected_output: > expected_output: >
A list with 10 bullet points of the most relevant information about {topic} A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task: reporting_task:
description: > description: >
@@ -14,4 +13,3 @@ reporting_task:
expected_output: > expected_output: >
A fully fledge reports with the mains topics, each with a full section of information. A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```' Formatted as markdown without '```'
agent: reporting_analyst

Some files were not shown because too many files have changed in this diff Show More