Compare commits

..

1 Commits

Author SHA1 Message Date
Brandon Hancock
54acbc9d0e wip 2025-01-10 17:16:10 -05:00
23 changed files with 4407 additions and 1199 deletions

View File

@@ -1,32 +1,60 @@
name: Run Tests
on: [pull_request]
on:
pull_request:
push:
branches:
- main
permissions:
contents: write
env:
OPENAI_API_KEY: fake-api-key
jobs:
tests:
runs-on: ubuntu-latest
timeout-minutes: 15
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
MODEL: gpt-4o-mini
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Install uv
- name: Install UV
uses: astral-sh/setup-uv@v3
with:
enable-cache: true
- name: Set up Python
run: uv python install 3.12.8
- name: Install the project
run: uv sync --dev --all-extras
- name: Run tests
run: uv run pytest tests -vv
- name: Run General Tests
run: uv run pytest tests -k "not main_branch_tests" -vv
main_branch_tests:
if: github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
needs: tests
timeout-minutes: 15
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Install UV
uses: astral-sh/setup-uv@v3
with:
enable-cache: true
- name: Set up Python
run: uv python install 3.12.8
- name: Install the project
run: uv sync --dev --all-extras
- name: Run Main Branch Specific Tests
run: uv run pytest tests/main_branch_tests -vv

View File

@@ -31,7 +31,7 @@ From this point on, your crew will have planning enabled, and the tasks will be
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks.
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
When running the base case example, you will see something like the output below, which represents the output of the `AgentPlanner`
responsible for creating the step-by-step logic to add to the Agents' tasks.
@@ -39,6 +39,7 @@ responsible for creating the step-by-step logic to add to the Agents' tasks.
<CodeGroup>
```python Code
from crewai import Crew, Agent, Task, Process
from langchain_openai import ChatOpenAI
# Assemble your crew with planning capabilities and custom LLM
my_crew = Crew(
@@ -46,7 +47,7 @@ my_crew = Crew(
tasks=self.tasks,
process=Process.sequential,
planning=True,
planning_llm="gpt-4o"
planning_llm=ChatOpenAI(model="gpt-4o")
)
# Run the crew

View File

@@ -23,7 +23,9 @@ Processes enable individual agents to operate as a cohesive unit, streamlining t
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` or `manager_agent` for the manager agent.
```python
from crewai import Crew, Process
from crewai import Crew
from crewai.process import Process
from langchain_openai import ChatOpenAI
# Example: Creating a crew with a sequential process
crew = Crew(
@@ -38,7 +40,7 @@ crew = Crew(
agents=my_agents,
tasks=my_tasks,
process=Process.hierarchical,
manager_llm="gpt-4o"
manager_llm=ChatOpenAI(model="gpt-4")
# or
# manager_agent=my_manager_agent
)

View File

@@ -150,20 +150,15 @@ There are two main ways for one to create a CrewAI tool:
```python Code
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "What this tool does. It's vital for effective utilization."
args_schema: Type[BaseModel] = MyToolInput
description: str = "Clear description for what this tool is useful for, your agent will need this information to use it."
def _run(self, argument: str) -> str:
# Your tool's logic here
return "Tool's result"
# Implementation goes here
return "Result from custom tool"
```
### Utilizing the `tool` Decorator

View File

@@ -73,9 +73,9 @@ result = crew.kickoff()
If you're using the hierarchical process and don't want to set a custom manager agent, you can specify the language model for the manager:
```python Code
from crewai import LLM
from langchain_openai import ChatOpenAI
manager_llm = LLM(model="gpt-4o")
manager_llm = ChatOpenAI(model_name="gpt-4")
crew = Crew(
agents=[researcher, writer],

View File

@@ -301,166 +301,38 @@ Use the annotations to properly reference the agent and task in the `crew.py` fi
### Annotations include:
Here are examples of how to use each annotation in your CrewAI project, and when you should use them:
* `@agent`
* `@task`
* `@crew`
* `@tool`
* `@before_kickoff`
* `@after_kickoff`
* `@callback`
* `@output_json`
* `@output_pydantic`
* `@cache_handler`
#### @agent
Used to define an agent in your crew. Use this when:
- You need to create a specialized AI agent with a specific role
- You want the agent to be automatically collected and managed by the crew
- You need to reuse the same agent configuration across multiple tasks
```python
```python crew.py
# ...
@agent
def research_agent(self) -> Agent:
def email_summarizer(self) -> Agent:
return Agent(
role="Research Analyst",
goal="Conduct thorough research on given topics",
backstory="Expert researcher with years of experience in data analysis",
tools=[SerperDevTool()],
verbose=True
config=self.agents_config["email_summarizer"],
)
```
#### @task
Used to define a task that can be executed by agents. Use this when:
- You need to define a specific piece of work for an agent
- You want tasks to be automatically sequenced and managed
- You need to establish dependencies between different tasks
```python
@task
def research_task(self) -> Task:
def email_summarizer_task(self) -> Task:
return Task(
description="Research the latest developments in AI technology",
expected_output="A comprehensive report on AI advancements",
agent=self.research_agent(),
output_file="output/research.md"
config=self.tasks_config["email_summarizer_task"],
)
# ...
```
#### @crew
Used to define your crew configuration. Use this when:
- You want to automatically collect all @agent and @task definitions
- You need to specify how tasks should be processed (sequential or hierarchical)
- You want to set up crew-wide configurations
```python
@crew
def research_crew(self) -> Crew:
return Crew(
agents=self.agents, # Automatically collected from @agent methods
tasks=self.tasks, # Automatically collected from @task methods
process=Process.sequential,
verbose=True
)
```
#### @tool
Used to create custom tools for your agents. Use this when:
- You need to give agents specific capabilities (like web search, data analysis)
- You want to encapsulate external API calls or complex operations
- You need to share functionality across multiple agents
```python
@tool
def web_search_tool(query: str, max_results: int = 5) -> list[str]:
"""
Search the web for information.
Args:
query: The search query
max_results: Maximum number of results to return
Returns:
List of search results
"""
# Implement your search logic here
return [f"Result {i} for: {query}" for i in range(max_results)]
```
#### @before_kickoff
Used to execute logic before the crew starts. Use this when:
- You need to validate or preprocess input data
- You want to set up resources or configurations before execution
- You need to perform any initialization logic
```python
@before_kickoff
def validate_inputs(self, inputs: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
"""Validate and preprocess inputs before the crew starts."""
if inputs is None:
return None
if 'topic' not in inputs:
raise ValueError("Topic is required")
# Add additional context
inputs['timestamp'] = datetime.now().isoformat()
inputs['topic'] = inputs['topic'].strip().lower()
return inputs
```
#### @after_kickoff
Used to process results after the crew completes. Use this when:
- You need to format or transform the final output
- You want to perform cleanup operations
- You need to save or log the results in a specific way
```python
@after_kickoff
def process_results(self, result: CrewOutput) -> CrewOutput:
"""Process and format the results after the crew completes."""
result.raw = result.raw.strip()
result.raw = f"""
# Research Results
Generated on: {datetime.now().isoformat()}
{result.raw}
"""
return result
```
#### @callback
Used to handle events during crew execution. Use this when:
- You need to monitor task progress
- You want to log intermediate results
- You need to implement custom progress tracking or metrics
```python
@callback
def log_task_completion(self, task: Task, output: str):
"""Log task completion details for monitoring."""
print(f"Task '{task.description}' completed")
print(f"Output length: {len(output)} characters")
print(f"Agent used: {task.agent.role}")
print("-" * 50)
```
#### @cache_handler
Used to implement custom caching for task results. Use this when:
- You want to avoid redundant expensive operations
- You need to implement custom cache storage or expiration logic
- You want to persist results between runs
```python
@cache_handler
def custom_cache(self, key: str) -> Optional[str]:
"""Custom cache implementation for storing task results."""
cache_file = f"cache/{key}.json"
if os.path.exists(cache_file):
with open(cache_file, 'r') as f:
data = json.load(f)
# Check if cache is still valid (e.g., not expired)
if datetime.fromisoformat(data['timestamp']) > datetime.now() - timedelta(days=1):
return data['result']
return None
```
<Note>
These decorators are part of the CrewAI framework and help organize your crew's structure by automatically collecting agents, tasks, and handling various lifecycle events.
They should be used within a class decorated with `@CrewBase`.
</Note>
<Tip>
In addition to the [sequential process](../how-to/sequential-process), you can use the [hierarchical process](../how-to/hierarchical-process),
which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results.
You can learn more about the core concepts [here](/concepts).
</Tip>
### Replay Tasks from Latest Crew Kickoff

View File

@@ -86,7 +86,7 @@ class Agent(BaseAgent):
llm: Union[str, InstanceOf[LLM], Any] = Field(
description="Language model that will run the agent.", default=None
)
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
system_template: Optional[str] = Field(
@@ -142,8 +142,7 @@ class Agent(BaseAgent):
self.agent_ops_agent_name = self.role
self.llm = create_llm(self.llm)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
self.function_calling_llm = create_llm(self.function_calling_llm)
if not self.agent_executor:
self._setup_agent_executor()

View File

@@ -145,6 +145,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self._is_context_length_exceeded(e):
self._handle_context_length()
continue
else:
raise e
self._show_logs(formatted_answer)
return formatted_answer
@@ -314,7 +316,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
tool_calling = tool_usage.parse(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message

View File

@@ -47,7 +47,6 @@ from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
)
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -150,7 +149,7 @@ class Crew(BaseModel):
manager_agent: Optional[BaseAgent] = Field(
description="Custom agent that will be used as manager.", default=None
)
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
@@ -246,9 +245,15 @@ class Crew(BaseModel):
if self.output_log_file:
self._file_handler = FileHandler(self.output_log_file)
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
if self.function_calling_llm:
if isinstance(self.function_calling_llm, str):
self.function_calling_llm = LLM(model=self.function_calling_llm)
elif not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = LLM(
model=getattr(self.function_calling_llm, "model_name", None)
or getattr(self.function_calling_llm, "deployment_name", None)
or str(self.function_calling_llm)
)
self._telemetry = Telemetry()
self._telemetry.set_tracer()
return self

View File

@@ -1,13 +1,9 @@
import ast
import datetime
import json
import re
import time
from difflib import SequenceMatcher
from textwrap import dedent
from typing import Any, Dict, List, Union
from json_repair import repair_json
from typing import Any, List, Union
import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler
@@ -23,15 +19,7 @@ try:
import agentops # type: ignore
except ImportError:
agentops = None
OPENAI_BIGGER_MODELS = [
"gpt-4",
"gpt-4o",
"o1-preview",
"o1-mini",
"o1",
"o3",
"o3-mini",
]
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini", "o1", "o3", "o3-mini"]
class ToolUsageErrorException(Exception):
@@ -92,7 +80,7 @@ class ToolUsage:
self._max_parsing_attempts = 2
self._remember_format_after_usages = 4
def parse_tool_calling(self, tool_string: str):
def parse(self, tool_string: str):
"""Parse the tool string and return the tool calling."""
return self._tool_calling(tool_string)
@@ -106,6 +94,7 @@ class ToolUsage:
self.task.increment_tools_errors()
return error
# BUG? The code below seems to be unreachable
try:
tool = self._select_tool(calling.tool_name)
except Exception as e:
@@ -127,7 +116,7 @@ class ToolUsage:
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}"
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
def _use(
self,
@@ -360,13 +349,13 @@ class ToolUsage:
tool_name = self.action.tool
tool = self._select_tool(tool_name)
try:
arguments = self._validate_tool_input(self.action.tool_input)
tool_input = self._validate_tool_input(self.action.tool_input)
arguments = ast.literal_eval(tool_input)
except Exception:
if raise_error:
raise
else:
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_arguments_error")}'
)
@@ -374,14 +363,14 @@ class ToolUsage:
if raise_error:
raise
else:
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_arguments_error")}'
)
return ToolCalling(
tool_name=tool.name,
arguments=arguments,
log=tool_string,
log=tool_string, # type: ignore
)
def _tool_calling(
@@ -407,28 +396,57 @@ class ToolUsage:
)
return self._tool_calling(tool_string)
def _validate_tool_input(self, tool_input: str) -> Dict[str, Any]:
def _validate_tool_input(self, tool_input: str) -> str:
try:
# Replace Python literals with JSON equivalents
replacements = {
r"'": '"',
r"None": "null",
r"True": "true",
r"False": "false",
}
for pattern, replacement in replacements.items():
tool_input = re.sub(pattern, replacement, tool_input)
ast.literal_eval(tool_input)
return tool_input
except Exception:
# Clean and ensure the string is properly enclosed in braces
tool_input = tool_input.strip()
if not tool_input.startswith("{"):
tool_input = "{" + tool_input
if not tool_input.endswith("}"):
tool_input += "}"
arguments = json.loads(tool_input)
except json.JSONDecodeError:
# Attempt to repair JSON string
repaired_input = repair_json(tool_input)
try:
arguments = json.loads(repaired_input)
except json.JSONDecodeError as e:
raise Exception(f"Invalid tool input JSON: {e}")
# Manually split the input into key-value pairs
entries = tool_input.strip("{} ").split(",")
formatted_entries = []
return arguments
for entry in entries:
if ":" not in entry:
continue # Skip malformed entries
key, value = entry.split(":", 1)
# Remove extraneous white spaces and quotes, replace single quotes
key = key.strip().strip('"').replace("'", '"')
value = value.strip()
# Handle replacement of single quotes at the start and end of the value string
if value.startswith("'") and value.endswith("'"):
value = value[1:-1] # Remove single quotes
value = (
'"' + value.replace('"', '\\"') + '"'
) # Re-encapsulate with double quotes
elif value.isdigit(): # Check if value is a digit, hence integer
value = value
elif value.lower() in [
"true",
"false",
]: # Check for boolean and null values
value = value.lower().capitalize()
elif value.lower() == "null":
value = "None"
else:
# Assume the value is a string and needs quotes
value = '"' + value.replace('"', '\\"') + '"'
# Rebuild the entry with proper quoting
formatted_entry = f'"{key}": {value}'
formatted_entries.append(formatted_entry)
# Reconstruct the JSON string
new_json_string = "{" + ", ".join(formatted_entries) + "}"
return new_json_string
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
event_data = self._prepare_event_data(tool, tool_calling)

View File

@@ -9,11 +9,11 @@
"task": "\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:",
"memory": "\n\n# Useful context: \n{memory}",
"role_playing": "You are {role}. {backstory}\nYour personal goal is: {goal}",
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```",
"no_tools": "\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. When responding, I must use the following format:\n\n```\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n```\nThis Thought/Action/Action Input/Result can repeat N times. Once I know the final answer, I must return the following format:\n\n```\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n```",
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\n```\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n```",
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nHere is the expected format I must follow:\n\n```\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n This Thought/Action/Action Input/Result process can repeat N times. Once I know the final answer, I must return the following format:\n\n```\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n```",
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple python dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
"no_tools": "\nTo give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output}\nyou MUST return the actual complete content as the final answer, not a summary.",
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",

View File

@@ -1,117 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRlxiTxduAVoXHHY58Fvfbll5IS\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458417,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: This is a test task, and the context or question from the coworker is
not specified. Therefore, my best effort would be to affirm my readiness to
answer accurately and in detail any question about Futel Football Club based
on the context described. If provided with specific information or questions,
I will ensure to respond comprehensively as required by my job directives.\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 177,\n \"completion_tokens\":
82,\n \"total_tokens\": 259,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78bf7bd6cc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:40 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2263'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7c1a31da73cd103e9f410f908e59187f
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,119 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRrFJZGKw8cIEshvuW1PKwFZFKs\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458423,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Although you mentioned this being a \\\"Test task\\\" and haven't provided
a specific question regarding Futel Football Club, your request appears to involve
ensuring accuracy and detail in responses. For a proper answer about Futel,
I'd be ready to provide details about the club's history, management, players,
match schedules, and recent performance statistics. Remember to ask specific
questions to receive a targeted response. If this were a real context where
information was shared, I would respond precisely to what's been asked regarding
Futel Football Club.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 113,\n \"total_tokens\": 290,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c1d0ecdc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:47 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3097'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_179e1d56e2b17303e40480baffbc7b08
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,114 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRqgg7eiHnDi2DOqdk99fiqOboz\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458422,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Your best answer to your coworker asking you this, accounting for the
context shared. You MUST return the actual complete content as the final answer,
not a summary.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 44,\n \"total_tokens\": 221,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c164ad2c002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:43 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '899'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_9f5226208edb90a27987aaf7e0ca03d3
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,119 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRjmwH5mrykLxQhFwTqqTiDtuTf\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458415,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As this is a test task, please note that Futel Football Club is fictional
and any specific details about it would not be available. However, if you have
specific questions or need information about a particular aspect of Futel or
any general football club inquiry, feel free to ask, and I'll do my best to
assist you with your query!\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 79,\n \"total_tokens\": 256,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78be5eebfc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:37 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
path=/; expires=Thu, 09-Jan-25 22:03:37 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2730'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_014478ba748f860d10ac250ca0ba824a
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,119 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRofLgmzWcDya5LILqYwIJYgFoq\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458420,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As an official Futel Football Club infopoint, my responsibility is to
provide detailed and accurate information about the club. This includes answering
questions regarding team statistics, player performances, upcoming fixtures,
ticketing and fan zone details, club history, and community initiatives. Our
focus is to ensure that fans and stakeholders have access to the latest and
most precise information about the club's on and off-pitch activities. If there's
anything specific you need to know, just let me know, and I'll be more than
happy to assist!\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 115,\n \"total_tokens\": 292,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c066f37c002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:42 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2459'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a146dd27f040f39a576750970cca0f52
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -1464,35 +1464,39 @@ def test_dont_set_agents_step_callback_if_already_set():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_function_calling_llm():
from unittest.mock import patch
from crewai import LLM
from crewai.tools import tool
llm = LLM(model="gpt-4o-mini")
llm = "gpt-4o"
@tool
def look_up_greeting() -> str:
"""Tool used to retrieve a greeting."""
return "Howdy!"
def learn_about_AI() -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
agent1 = Agent(
role="Greeter",
goal="Say hello.",
backstory="You are a friendly greeter.",
tools=[look_up_greeting],
role="test role",
goal="test goal",
backstory="test backstory",
tools=[learn_about_AI],
llm="gpt-4o-mini",
function_calling_llm=llm,
)
essay = Task(
description="Look up the greeting and say it.",
expected_output="A greeting.",
description="Write and then review an small paragraph on AI until it's AMAZING",
expected_output="The final paragraph.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
crew = Crew(agents=[agent1], tasks=[essay])
result = crew.kickoff()
assert result.raw == "Howdy!"
with patch.object(
instructor, "from_litellm", wraps=instructor.from_litellm
) as mock_from_litellm:
crew.kickoff()
mock_from_litellm.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])

289
tests/e2e_crew_tests.py Normal file
View File

@@ -0,0 +1,289 @@
import asyncio
import os
import tempfile
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
def test_basic_crew_execution(default_agent):
"""Test basic crew execution using the default agent fixture."""
# Initialize agents by copying the default agent fixture
researcher = default_agent.copy()
researcher.role = "Researcher"
researcher.goal = "Research the latest advancements in AI."
researcher.backstory = "An expert in AI technologies."
writer = default_agent.copy()
writer.role = "Writer"
writer.goal = "Write an article based on research findings."
writer.backstory = "A professional writer specializing in technology topics."
# Define tasks
research_task = Task(
description="Provide a summary of the latest advancements in AI.",
expected_output="A detailed summary of recent AI advancements.",
agent=researcher,
)
writing_task = Task(
description="Write an article based on the research summary.",
expected_output="An engaging article on AI advancements.",
agent=writer,
)
# Create the crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
process=Process.sequential,
)
# Execute the crew
result = crew.kickoff()
# Assertions to verify the result
assert result is not None, "Crew execution did not return a result."
assert isinstance(result, CrewOutput), "Result is not an instance of CrewOutput."
assert (
"AI advancements" in result.raw
or "artificial intelligence" in result.raw.lower()
), "Result does not contain expected content."
def test_hierarchical_crew_with_manager(default_llm_config):
"""Test hierarchical crew execution with a manager agent."""
# Initialize agents using the default LLM config fixture
ceo = Agent(
role="CEO",
goal="Oversee the project and ensure quality deliverables.",
backstory="A seasoned executive with a keen eye for detail.",
llm=default_llm_config,
)
developer = Agent(
role="Developer",
goal="Implement software features as per requirements.",
backstory="An experienced software developer.",
llm=default_llm_config,
)
tester = Agent(
role="Tester",
goal="Test software features and report bugs.",
backstory="A meticulous QA engineer.",
llm=default_llm_config,
)
# Define tasks
development_task = Task(
description="Develop the new authentication feature.",
expected_output="Code implementation of the authentication feature.",
agent=developer,
)
testing_task = Task(
description="Test the authentication feature for vulnerabilities.",
expected_output="A report on any found bugs or vulnerabilities.",
agent=tester,
)
# Create the crew with hierarchical process
crew = Crew(
agents=[ceo, developer, tester],
tasks=[development_task, testing_task],
process=Process.hierarchical,
manager_agent=ceo,
)
# Execute the crew
result = crew.kickoff()
# Assertions to verify the result
assert result is not None, "Crew execution did not return a result."
assert isinstance(result, CrewOutput), "Result is not an instance of CrewOutput."
assert (
"authentication" in result.raw.lower()
), "Result does not contain expected content."
@pytest.mark.asyncio
async def test_asynchronous_task_execution(default_llm_config):
"""Test crew execution with asynchronous tasks."""
# Initialize agent
data_processor = Agent(
role="Data Processor",
goal="Process large datasets efficiently.",
backstory="An expert in data processing and analysis.",
llm=default_llm_config,
)
# Define tasks with async_execution=True
async_task1 = Task(
description="Process dataset A asynchronously.",
expected_output="Processed results of dataset A.",
agent=data_processor,
async_execution=True,
)
async_task2 = Task(
description="Process dataset B asynchronously.",
expected_output="Processed results of dataset B.",
agent=data_processor,
async_execution=True,
)
# Create the crew
crew = Crew(
agents=[data_processor],
tasks=[async_task1, async_task2],
process=Process.sequential,
)
# Execute the crew asynchronously
result = await crew.kickoff_async()
# Assertions to verify the result
assert result is not None, "Crew execution did not return a result."
assert isinstance(result, CrewOutput), "Result is not an instance of CrewOutput."
assert (
"dataset a" in result.raw.lower() or "dataset b" in result.raw.lower()
), "Result does not contain expected content."
def test_crew_with_conditional_task(default_llm_config):
"""Test crew execution that includes a conditional task."""
# Initialize agents
analyst = Agent(
role="Analyst",
goal="Analyze data and make decisions based on insights.",
backstory="A data analyst with experience in predictive modeling.",
llm=default_llm_config,
)
decision_maker = Agent(
role="Decision Maker",
goal="Make decisions based on analysis.",
backstory="An executive responsible for strategic decisions.",
llm=default_llm_config,
)
# Define tasks
analysis_task = Task(
description="Analyze the quarterly financial data.",
expected_output="A report highlighting key financial insights.",
agent=analyst,
)
decision_task = ConditionalTask(
description="If the profit margin is below 10%, recommend cost-cutting measures.",
expected_output="Recommendations for reducing costs.",
agent=decision_maker,
condition=lambda output: "profit margin below 10%" in output.lower(),
)
# Create the crew
crew = Crew(
agents=[analyst, decision_maker],
tasks=[analysis_task, decision_task],
process=Process.sequential,
)
# Execute the crew
result = crew.kickoff()
# Assertions to verify the result
assert result is not None, "Crew execution did not return a result."
assert isinstance(result, CrewOutput), "Result is not an instance of CrewOutput."
assert len(result.tasks_output) >= 1, "No tasks were executed."
def test_crew_with_output_file():
"""Test crew execution that writes output to a file."""
# Access the API key from environment variables
openai_api_key = os.environ.get("OPENAI_API_KEY")
assert openai_api_key, "OPENAI_API_KEY environment variable is not set."
# Create a temporary directory for output files
with tempfile.TemporaryDirectory() as tmpdirname:
# Initialize agent
content_creator = Agent(
role="Content Creator",
goal="Generate engaging blog content.",
backstory="A creative writer with a passion for storytelling.",
llm={"provider": "openai", "model": "gpt-4", "api_key": openai_api_key},
)
# Define task with output file
output_file_path = f"{tmpdirname}/blog_post.txt"
blog_task = Task(
description="Write a blog post about the benefits of remote work.",
expected_output="An informative and engaging blog post.",
agent=content_creator,
output_file=output_file_path,
)
# Create the crew
crew = Crew(
agents=[content_creator],
tasks=[blog_task],
process=Process.sequential,
)
# Execute the crew
crew.kickoff()
# Assertions to verify the result
assert os.path.exists(output_file_path), "Output file was not created."
# Read the content from the file and perform assertions
with open(output_file_path, "r") as file:
content = file.read()
assert (
"remote work" in content.lower()
), "Output file does not contain expected content."
def test_invalid_hierarchical_process():
"""Test that an error is raised when using hierarchical process without a manager agent or manager_llm."""
with pytest.raises(ValueError) as exc_info:
Crew(
agents=[],
tasks=[],
process=Process.hierarchical, # Hierarchical process without a manager
)
assert "manager_llm or manager_agent is required" in str(exc_info.value)
def test_crew_with_memory(memory_agent, memory_tasks):
"""Test crew execution utilizing memory."""
# Enable memory in the crew
crew = Crew(
agents=[memory_agent],
tasks=memory_tasks,
process=Process.sequential,
memory=True, # Enable memory
)
# Execute the crew
result = crew.kickoff()
# Assertions to verify the result
assert result is not None, "Crew execution did not return a result."
assert isinstance(result, CrewOutput), "Result is not an instance of CrewOutput."
assert (
"history of ai" in result.raw.lower() and "future of ai" in result.raw.lower()
), "Result does not contain expected content."

View File

@@ -1,103 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Role. Test Backstory\nYour
personal goal is: Test Goal\nTo give my best complete final answer to the task
use the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Return: Test output\n\nThis
is the expect criteria for your final answer: Test output\nyou MUST return the
actual complete content as the final answer, not a summary.\n\nBegin! This is
VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '776'
content-type:
- application/json
cookie:
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
x-stainless-raw-response:
- 'true'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7fr4aPstiFUArxwxTVdfJSFwxsC\",\n \"object\":
\"chat.completion\",\n \"created\": 1727214471,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal
Answer: Test output\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
155,\n \"completion_tokens\": 15,\n \"total_tokens\": 170,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_52a7f40b0b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85f9a91e311cf3-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:47:51 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '216'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999817'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_88b1376917b345c976fdb03a55f7b6c1
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,6 +1,8 @@
from unittest.mock import MagicMock
import pytest
from crewai import Agent
from crewai import Agent, Task
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
@@ -20,9 +22,12 @@ class InternalAgentTool(BaseAgentTool):
("Futel Official Infopoint\n", True), # trailing newline
('"Futel Official Infopoint"', True), # embedded quotes
(" FUTEL\nOFFICIAL INFOPOINT ", True), # multiple whitespace and newline
("futel official infopoint", True), # lowercase
("FUTEL OFFICIAL INFOPOINT", True), # uppercase
("Non Existent Agent", False), # non-existent agent
(None, False), # None agent name
],
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_tool_role_matching(role_name, should_match):
"""Test that agent tools can match roles regardless of case, whitespace, and special characters."""
# Create test agent

View File

@@ -121,113 +121,3 @@ def test_tool_usage_render():
"Tool Name: Random Number Generator\nTool Arguments: {'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}, 'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}}\nTool Description: Generates a random number within a specified range"
in rendered
)
def test_validate_tool_input_booleans_and_none():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with booleans and None
tool_input = '{"key1": True, "key2": False, "key3": None}'
expected_arguments = {"key1": True, "key2": False, "key3": None}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_mixed_types():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with mixed types
tool_input = '{"number": 123, "text": "Some text", "flag": True}'
expected_arguments = {"number": 123, "text": "Some text", "flag": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_single_quotes():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with single quotes instead of double quotes
tool_input = "{'key': 'value', 'flag': True}"
expected_arguments = {"key": "value", "flag": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_invalid_json_repairable():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Invalid JSON input that can be repaired
tool_input = '{"key": "value", "list": [1, 2, 3,]}'
expected_arguments = {"key": "value", "list": [1, 2, 3]}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_with_special_characters():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with special characters
tool_input = '{"message": "Hello, world! \u263A", "valid": True}'
expected_arguments = {"message": "Hello, world! ☺", "valid": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments