Commit Graph

10 Commits

Author SHA1 Message Date
Lorenze Jay
6f2e39c0dd feat: enhance knowledge and guardrail event handling in Agent class (#3672)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
* feat: enhance knowledge event handling in Agent class

- Updated the Agent class to include task context in knowledge retrieval events.
- Emitted new events for knowledge retrieval and query processes, capturing task and agent details.
- Refactored knowledge event classes to inherit from a base class for better structure and maintainability.
- Added tracing for knowledge events in the TraceCollectionListener to improve observability.

This change improves the tracking and management of knowledge queries and retrievals, facilitating better debugging and performance monitoring.

* refactor: remove task_id from knowledge event emissions in Agent class

- Removed the task_id parameter from various knowledge event emissions in the Agent class to streamline event handling.
- This change simplifies the event structure and focuses on the essential context of knowledge retrieval and query processes.

This refactor enhances the clarity of knowledge events and aligns with the recent improvements in event handling.

* surface association for guardrail events

* fix: improve LLM selection logic in converter

- Updated the logic for selecting the LLM in the convert_with_instructions function to handle cases where the agent may not have a function_calling_llm attribute.
- This change ensures that the converter can still function correctly by falling back to the standard LLM if necessary, enhancing robustness and preventing potential errors.

This fix improves the reliability of the conversion process when working with different agent configurations.

* fix test

* fix: enforce valid LLM instance requirement in converter

- Updated the convert_with_instructions function to ensure that a valid LLM instance is provided by the agent.
- If neither function_calling_llm nor the standard llm is available, a ValueError is raised, enhancing error handling and robustness.
- Improved error messaging for conversion failures to provide clearer feedback on issues encountered during the conversion process.

This change strengthens the reliability of the conversion process by ensuring that agents are properly configured with a valid LLM.
2025-10-08 11:53:13 -07:00
Lorenze Jay
7addda9398 Lorenze/better tracing events (#3382)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* feat: implement tool usage limit exception handling

- Introduced `ToolUsageLimitExceeded` exception to manage maximum usage limits for tools.
- Enhanced `CrewStructuredTool` to check and raise this exception when the usage limit is reached.
- Updated `_run` and `_execute` methods to include usage limit checks and handle exceptions appropriately, improving reliability and user feedback.

* feat: enhance PlusAPI and ToolUsage with task metadata

- Removed the `send_trace_batch` method from PlusAPI to streamline the API.
- Added timeout parameters to trace event methods in PlusAPI for improved reliability.
- Updated ToolUsage to include task metadata (task name and ID) in event emissions, enhancing traceability and context during tool usage.
- Refactored event handling in LLM and ToolUsage events to ensure task information is consistently captured.

* feat: enhance memory and event handling with task and agent metadata

- Added task and agent metadata to various memory and event classes, improving traceability and context during memory operations.
- Updated the `ContextualMemory` and `Memory` classes to associate tasks and agents, allowing for better context management.
- Enhanced event emissions in `LLM`, `ToolUsage`, and memory events to include task and agent information, facilitating improved debugging and monitoring.
- Refactored event handling to ensure consistent capture of task and agent details across the system.

* drop

* refactor: clean up unused imports in memory and event modules

- Removed unused TYPE_CHECKING imports from long_term_memory.py to streamline the code.
- Eliminated unnecessary import from memory_events.py, enhancing clarity and maintainability.

* fix memory tests

* fix task_completed payload

* fix: remove unused test agent variable in external memory tests

* refactor: remove unused agent parameter from Memory class save method

- Eliminated the agent parameter from the save method in the Memory class to streamline the code and improve clarity.
- Updated the TraceBatchManager class by moving initialization of attributes into the constructor for better organization and readability.

* refactor: enhance ExecutionState and ReasoningEvent classes with optional task and agent identifiers

- Added optional `current_agent_id` and `current_task_id` attributes to the `ExecutionState` class for better tracking of agent and task states.
- Updated the `from_task` attribute in the `ReasoningEvent` class to use `Optional[Any]` instead of a specific type, improving flexibility in event handling.

* refactor: update ExecutionState class by removing unused agent and task identifiers

- Removed the `current_agent_id` and `current_task_id` attributes from the `ExecutionState` class to simplify the code and enhance clarity.
- Adjusted the import statements to include `Optional` for better type handling.

* refactor: streamline LLM event handling in LiteAgent

- Removed unused LLM event emissions (LLMCallStartedEvent, LLMCallCompletedEvent, LLMCallFailedEvent) from the LiteAgent class to simplify the code and improve performance.
- Adjusted the flow of LLM response handling by eliminating unnecessary event bus interactions, enhancing clarity and maintainability.

* flow ownership and not emitting events when a crew is done

* refactor: remove unused agent parameter from ShortTermMemory save method

- Eliminated the agent parameter from the save method in the ShortTermMemory class to streamline the code and improve clarity.
- This change enhances the maintainability of the memory management system by reducing unnecessary complexity.

* runtype check fix

* fixing tests

* fix lints

* fix: update event assertions in test_llm_emits_event_with_lite_agent

- Adjusted the expected counts for completed and started events in the test to reflect the correct behavior of the LiteAgent.
- Updated assertions for agent roles and IDs to match the expected values after recent changes in event handling.

* fix: update task name assertions in event tests

- Modified assertions in `test_stream_llm_emits_event_with_task_and_agent_info` and `test_llm_emits_event_with_task_and_agent_info` to use `task.description` as a fallback for `task.name`. This ensures that the tests correctly validate the task name even when it is not explicitly set.

* fix: update test assertions for output values and improve readability

- Updated assertions in `test_output_json_dict_hierarchical` to reflect the correct expected score value.
- Enhanced readability of assertions in `test_output_pydantic_to_another_task` and `test_key` by formatting the error messages for clarity.
- These changes ensure that the tests accurately validate the expected outputs and improve overall code quality.

* test fixes

* fix crew_test

* added another fixture

* fix: ensure agent and task assignments in contextual memory are conditional

- Updated the ContextualMemory class to check for the existence of short-term, long-term, external, and extended memory before assigning agent and task attributes. This prevents potential attribute errors when memory types are not initialized.
2025-08-26 09:09:46 -07:00
João Moura
e19bdcb97d Bringing support to o1 family back + any models that don't support stop words 2024-09-24 22:18:20 -03:00
João Moura
2d54b096af updating tests 2024-09-23 17:45:20 -03:00
João Moura
59e51f18fd updating tests 2024-09-23 03:58:41 -03:00
João Moura
5a3b888f43 Updating all cassetes 2024-09-18 04:17:41 -03:00
João Moura
e77442cf34 Removing LangChain and Rebuilding Executor (#1322)
* rebuilding executor

* removing langchain

* Making all tests good

* fixing types and adding ability for nor using system prompts

* improving types

* pleasing the types gods

* pleasing the types gods

* fixing parser, tools and executor

* making sure all tests pass

* final pass

* fixing type

* Updating Docs

* preparing to cut new version
2024-09-16 14:14:04 -03:00
Eduardo Chiarotti
bb64c80964 fix: Fix tests (#873)
* fix: call asserts

* fix: test_increment_tool_errors

* fix: test_increment_delegations_for_sequential_process

* fix: test_increment_delegations_for_hierarchical_process

* fix: test_code_execution_flag_adds_code_tool_upon_kickoff

* fix: test_tool_usage_information_is_appended_to_agent

* fix: try to fix test_crew_full_output

* fix: try to fix test_crew_full_output

* fix: test remove vcr to test crew_test test

* fix: comment test to see if ci passes

* fix: comment test to see if ci passes

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test new approach

* fix: comment funciont not working in CI

* fix: github python version

* fix: remove need of vcr

* fix: fix and add comments for all type checking errors
2024-07-05 09:06:56 -03:00
João Moura
b856b21fc6 updating tests 2024-03-03 20:54:15 -03:00
João Moura
340bea3271 Adding ability to track tools_errors and delegations 2024-02-28 03:44:23 -03:00