mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 16:18:30 +00:00
Brandon/improve llm structured output (#2029)
* code and tests work * update docs --------- Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
This commit is contained in:
committed by
GitHub
parent
515478473a
commit
f4bb040ad8
@@ -5,15 +5,17 @@ import sys
|
||||
import threading
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Literal, Optional, Union, cast
|
||||
from typing import Any, Dict, List, Literal, Optional, Type, Union, cast
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from pydantic import BaseModel
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
import litellm
|
||||
from litellm import Choices, get_supported_openai_params
|
||||
from litellm.types.utils import ModelResponse
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
@@ -128,7 +130,7 @@ class LLM:
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[int, float]] = None,
|
||||
response_format: Optional[Dict[str, Any]] = None,
|
||||
response_format: Optional[Type[BaseModel]] = None,
|
||||
seed: Optional[int] = None,
|
||||
logprobs: Optional[int] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
@@ -213,6 +215,9 @@ class LLM:
|
||||
response = llm.call(messages)
|
||||
print(response)
|
||||
"""
|
||||
# Validate parameters before proceeding with the call.
|
||||
self._validate_call_params()
|
||||
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
@@ -312,6 +317,36 @@ class LLM:
|
||||
logging.error(f"LiteLLM call failed: {str(e)}")
|
||||
raise
|
||||
|
||||
def _get_custom_llm_provider(self) -> str:
|
||||
"""
|
||||
Derives the custom_llm_provider from the model string.
|
||||
- For example, if the model is "openrouter/deepseek/deepseek-chat", returns "openrouter".
|
||||
- If the model is "gemini/gemini-1.5-pro", returns "gemini".
|
||||
- If there is no '/', defaults to "openai".
|
||||
"""
|
||||
if "/" in self.model:
|
||||
return self.model.split("/")[0]
|
||||
return "openai"
|
||||
|
||||
def _validate_call_params(self) -> None:
|
||||
"""
|
||||
Validate parameters before making a call. Currently this only checks if
|
||||
a response_format is provided and whether the model supports it.
|
||||
The custom_llm_provider is dynamically determined from the model:
|
||||
- E.g., "openrouter/deepseek/deepseek-chat" yields "openrouter"
|
||||
- "gemini/gemini-1.5-pro" yields "gemini"
|
||||
- If no slash is present, "openai" is assumed.
|
||||
"""
|
||||
provider = self._get_custom_llm_provider()
|
||||
if self.response_format is not None and not supports_response_schema(
|
||||
model=self.model,
|
||||
custom_llm_provider=provider,
|
||||
):
|
||||
raise ValueError(
|
||||
f"The model {self.model} does not support response_format for provider '{provider}'. "
|
||||
"Please remove response_format or use a supported model."
|
||||
)
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
try:
|
||||
params = get_supported_openai_params(model=self.model)
|
||||
|
||||
Reference in New Issue
Block a user