mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 00:58:30 +00:00
feat: add streaming result support to flows and crews
* feat: add streaming result support to flows and crews * docs: add streaming execution documentation and integration tests
This commit is contained in:
450
docs/en/learn/streaming-flow-execution.mdx
Normal file
450
docs/en/learn/streaming-flow-execution.mdx
Normal file
@@ -0,0 +1,450 @@
|
||||
---
|
||||
title: Streaming Flow Execution
|
||||
description: Stream real-time output from your CrewAI flow execution
|
||||
icon: wave-pulse
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
## Introduction
|
||||
|
||||
CrewAI Flows support streaming output, allowing you to receive real-time updates as your flow executes. This feature enables you to build responsive applications that display results incrementally, provide live progress updates, and create better user experiences for long-running workflows.
|
||||
|
||||
## How Flow Streaming Works
|
||||
|
||||
When streaming is enabled on a Flow, CrewAI captures and streams output from any crews or LLM calls within the flow. The stream delivers structured chunks containing the content, task context, and agent information as execution progresses.
|
||||
|
||||
## Enabling Streaming
|
||||
|
||||
To enable streaming, set the `stream` attribute to `True` on your Flow class:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from crewai import Agent, Crew, Task
|
||||
|
||||
class ResearchFlow(Flow):
|
||||
stream = True # Enable streaming for the entire flow
|
||||
|
||||
@start()
|
||||
def initialize(self):
|
||||
return {"topic": "AI trends"}
|
||||
|
||||
@listen(initialize)
|
||||
def research_topic(self, data):
|
||||
researcher = Agent(
|
||||
role="Research Analyst",
|
||||
goal="Research topics thoroughly",
|
||||
backstory="Expert researcher with analytical skills",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Research {topic} and provide insights",
|
||||
expected_output="Detailed research findings",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[task],
|
||||
)
|
||||
|
||||
return crew.kickoff(inputs=data)
|
||||
```
|
||||
|
||||
## Synchronous Streaming
|
||||
|
||||
When you call `kickoff()` on a flow with streaming enabled, it returns a `FlowStreamingOutput` object that you can iterate over:
|
||||
|
||||
```python Code
|
||||
flow = ResearchFlow()
|
||||
|
||||
# Start streaming execution
|
||||
streaming = flow.kickoff()
|
||||
|
||||
# Iterate over chunks as they arrive
|
||||
for chunk in streaming:
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
# Access the final result after streaming completes
|
||||
result = streaming.result
|
||||
print(f"\n\nFinal output: {result}")
|
||||
```
|
||||
|
||||
### Stream Chunk Information
|
||||
|
||||
Each chunk provides context about where it originated in the flow:
|
||||
|
||||
```python Code
|
||||
streaming = flow.kickoff()
|
||||
|
||||
for chunk in streaming:
|
||||
print(f"Agent: {chunk.agent_role}")
|
||||
print(f"Task: {chunk.task_name}")
|
||||
print(f"Content: {chunk.content}")
|
||||
print(f"Type: {chunk.chunk_type}") # TEXT or TOOL_CALL
|
||||
```
|
||||
|
||||
### Accessing Streaming Properties
|
||||
|
||||
The `FlowStreamingOutput` object provides useful properties and methods:
|
||||
|
||||
```python Code
|
||||
streaming = flow.kickoff()
|
||||
|
||||
# Iterate and collect chunks
|
||||
for chunk in streaming:
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
# After iteration completes
|
||||
print(f"\nCompleted: {streaming.is_completed}")
|
||||
print(f"Full text: {streaming.get_full_text()}")
|
||||
print(f"Total chunks: {len(streaming.chunks)}")
|
||||
print(f"Final result: {streaming.result}")
|
||||
```
|
||||
|
||||
## Asynchronous Streaming
|
||||
|
||||
For async applications, use `kickoff_async()` with async iteration:
|
||||
|
||||
```python Code
|
||||
import asyncio
|
||||
|
||||
async def stream_flow():
|
||||
flow = ResearchFlow()
|
||||
|
||||
# Start async streaming
|
||||
streaming = await flow.kickoff_async()
|
||||
|
||||
# Async iteration over chunks
|
||||
async for chunk in streaming:
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
# Access final result
|
||||
result = streaming.result
|
||||
print(f"\n\nFinal output: {result}")
|
||||
|
||||
asyncio.run(stream_flow())
|
||||
```
|
||||
|
||||
## Streaming with Multi-Step Flows
|
||||
|
||||
Streaming works seamlessly across multiple flow steps, including flows that execute multiple crews:
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from crewai import Agent, Crew, Task
|
||||
|
||||
class MultiStepFlow(Flow):
|
||||
stream = True
|
||||
|
||||
@start()
|
||||
def research_phase(self):
|
||||
"""First crew: Research the topic."""
|
||||
researcher = Agent(
|
||||
role="Research Analyst",
|
||||
goal="Gather comprehensive information",
|
||||
backstory="Expert at finding relevant information",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Research AI developments in healthcare",
|
||||
expected_output="Research findings on AI in healthcare",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[researcher], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
|
||||
self.state["research"] = result.raw
|
||||
return result.raw
|
||||
|
||||
@listen(research_phase)
|
||||
def analysis_phase(self, research_data):
|
||||
"""Second crew: Analyze the research."""
|
||||
analyst = Agent(
|
||||
role="Data Analyst",
|
||||
goal="Analyze information and extract insights",
|
||||
backstory="Expert at identifying patterns and trends",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Analyze this research: {research}",
|
||||
expected_output="Key insights and trends",
|
||||
agent=analyst,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[analyst], tasks=[task])
|
||||
return crew.kickoff(inputs={"research": research_data})
|
||||
|
||||
|
||||
# Stream across both phases
|
||||
flow = MultiStepFlow()
|
||||
streaming = flow.kickoff()
|
||||
|
||||
current_step = ""
|
||||
for chunk in streaming:
|
||||
# Track which flow step is executing
|
||||
if chunk.task_name != current_step:
|
||||
current_step = chunk.task_name
|
||||
print(f"\n\n=== {chunk.task_name} ===\n")
|
||||
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
result = streaming.result
|
||||
print(f"\n\nFinal analysis: {result}")
|
||||
```
|
||||
|
||||
## Practical Example: Progress Dashboard
|
||||
|
||||
Here's a complete example showing how to build a progress dashboard with streaming:
|
||||
|
||||
```python Code
|
||||
import asyncio
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.types.streaming import StreamChunkType
|
||||
|
||||
class ResearchPipeline(Flow):
|
||||
stream = True
|
||||
|
||||
@start()
|
||||
def gather_data(self):
|
||||
researcher = Agent(
|
||||
role="Data Gatherer",
|
||||
goal="Collect relevant information",
|
||||
backstory="Skilled at finding quality sources",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Gather data on renewable energy trends",
|
||||
expected_output="Collection of relevant data points",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[researcher], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
self.state["data"] = result.raw
|
||||
return result.raw
|
||||
|
||||
@listen(gather_data)
|
||||
def analyze_data(self, data):
|
||||
analyst = Agent(
|
||||
role="Data Analyst",
|
||||
goal="Extract meaningful insights",
|
||||
backstory="Expert at data analysis",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Analyze: {data}",
|
||||
expected_output="Key insights and trends",
|
||||
agent=analyst,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[analyst], tasks=[task])
|
||||
return crew.kickoff(inputs={"data": data})
|
||||
|
||||
|
||||
async def run_with_dashboard():
|
||||
flow = ResearchPipeline()
|
||||
|
||||
print("="*60)
|
||||
print("RESEARCH PIPELINE DASHBOARD")
|
||||
print("="*60)
|
||||
|
||||
streaming = await flow.kickoff_async()
|
||||
|
||||
current_agent = ""
|
||||
current_task = ""
|
||||
chunk_count = 0
|
||||
|
||||
async for chunk in streaming:
|
||||
chunk_count += 1
|
||||
|
||||
# Display phase transitions
|
||||
if chunk.task_name != current_task:
|
||||
current_task = chunk.task_name
|
||||
current_agent = chunk.agent_role
|
||||
print(f"\n\n📋 Phase: {current_task}")
|
||||
print(f"👤 Agent: {current_agent}")
|
||||
print("-" * 60)
|
||||
|
||||
# Display text output
|
||||
if chunk.chunk_type == StreamChunkType.TEXT:
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
# Display tool usage
|
||||
elif chunk.chunk_type == StreamChunkType.TOOL_CALL and chunk.tool_call:
|
||||
print(f"\n🔧 Tool: {chunk.tool_call.tool_name}")
|
||||
|
||||
# Show completion summary
|
||||
result = streaming.result
|
||||
print(f"\n\n{'='*60}")
|
||||
print("PIPELINE COMPLETE")
|
||||
print(f"{'='*60}")
|
||||
print(f"Total chunks: {chunk_count}")
|
||||
print(f"Final output length: {len(str(result))} characters")
|
||||
|
||||
asyncio.run(run_with_dashboard())
|
||||
```
|
||||
|
||||
## Streaming with State Management
|
||||
|
||||
Streaming works naturally with Flow state management:
|
||||
|
||||
```python Code
|
||||
from pydantic import BaseModel
|
||||
|
||||
class AnalysisState(BaseModel):
|
||||
topic: str = ""
|
||||
research: str = ""
|
||||
insights: str = ""
|
||||
|
||||
class StatefulStreamingFlow(Flow[AnalysisState]):
|
||||
stream = True
|
||||
|
||||
@start()
|
||||
def research(self):
|
||||
# State is available during streaming
|
||||
topic = self.state.topic
|
||||
print(f"Researching: {topic}")
|
||||
|
||||
researcher = Agent(
|
||||
role="Researcher",
|
||||
goal="Research topics thoroughly",
|
||||
backstory="Expert researcher",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description=f"Research {topic}",
|
||||
expected_output="Research findings",
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[researcher], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
|
||||
self.state.research = result.raw
|
||||
return result.raw
|
||||
|
||||
@listen(research)
|
||||
def analyze(self, research):
|
||||
# Access updated state
|
||||
print(f"Analyzing {len(self.state.research)} chars of research")
|
||||
|
||||
analyst = Agent(
|
||||
role="Analyst",
|
||||
goal="Extract insights",
|
||||
backstory="Expert analyst",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Analyze: {research}",
|
||||
expected_output="Key insights",
|
||||
agent=analyst,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[analyst], tasks=[task])
|
||||
result = crew.kickoff(inputs={"research": research})
|
||||
|
||||
self.state.insights = result.raw
|
||||
return result.raw
|
||||
|
||||
|
||||
# Run with streaming
|
||||
flow = StatefulStreamingFlow()
|
||||
streaming = flow.kickoff(inputs={"topic": "quantum computing"})
|
||||
|
||||
for chunk in streaming:
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
result = streaming.result
|
||||
print(f"\n\nFinal state:")
|
||||
print(f"Topic: {flow.state.topic}")
|
||||
print(f"Research length: {len(flow.state.research)}")
|
||||
print(f"Insights length: {len(flow.state.insights)}")
|
||||
```
|
||||
|
||||
## Use Cases
|
||||
|
||||
Flow streaming is particularly valuable for:
|
||||
|
||||
- **Multi-Stage Workflows**: Show progress across research, analysis, and synthesis phases
|
||||
- **Complex Pipelines**: Provide visibility into long-running data processing flows
|
||||
- **Interactive Applications**: Build responsive UIs that display intermediate results
|
||||
- **Monitoring and Debugging**: Observe flow execution and crew interactions in real-time
|
||||
- **Progress Tracking**: Show users which stage of the workflow is currently executing
|
||||
- **Live Dashboards**: Create monitoring interfaces for production flows
|
||||
|
||||
## Stream Chunk Types
|
||||
|
||||
Like crew streaming, flow chunks can be of different types:
|
||||
|
||||
### TEXT Chunks
|
||||
|
||||
Standard text content from LLM responses:
|
||||
|
||||
```python Code
|
||||
for chunk in streaming:
|
||||
if chunk.chunk_type == StreamChunkType.TEXT:
|
||||
print(chunk.content, end="", flush=True)
|
||||
```
|
||||
|
||||
### TOOL_CALL Chunks
|
||||
|
||||
Information about tool calls within the flow:
|
||||
|
||||
```python Code
|
||||
for chunk in streaming:
|
||||
if chunk.chunk_type == StreamChunkType.TOOL_CALL and chunk.tool_call:
|
||||
print(f"\nTool: {chunk.tool_call.tool_name}")
|
||||
print(f"Args: {chunk.tool_call.arguments}")
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
Handle errors gracefully during streaming:
|
||||
|
||||
```python Code
|
||||
flow = ResearchFlow()
|
||||
streaming = flow.kickoff()
|
||||
|
||||
try:
|
||||
for chunk in streaming:
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
result = streaming.result
|
||||
print(f"\nSuccess! Result: {result}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\nError during flow execution: {e}")
|
||||
if streaming.is_completed:
|
||||
print("Streaming completed but flow encountered an error")
|
||||
```
|
||||
|
||||
## Important Notes
|
||||
|
||||
- Streaming automatically enables LLM streaming for any crews used within the flow
|
||||
- You must iterate through all chunks before accessing the `.result` property
|
||||
- Streaming works with both structured and unstructured flow state
|
||||
- Flow streaming captures output from all crews and LLM calls in the flow
|
||||
- Each chunk includes context about which agent and task generated it
|
||||
- Streaming adds minimal overhead to flow execution
|
||||
|
||||
## Combining with Flow Visualization
|
||||
|
||||
You can combine streaming with flow visualization to provide a complete picture:
|
||||
|
||||
```python Code
|
||||
# Generate flow visualization
|
||||
flow = ResearchFlow()
|
||||
flow.plot("research_flow") # Creates HTML visualization
|
||||
|
||||
# Run with streaming
|
||||
streaming = flow.kickoff()
|
||||
for chunk in streaming:
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
result = streaming.result
|
||||
print(f"\nFlow complete! View structure at: research_flow.html")
|
||||
```
|
||||
|
||||
By leveraging flow streaming, you can build sophisticated, responsive applications that provide users with real-time visibility into complex multi-stage workflows, making your AI automations more transparent and engaging.
|
||||
Reference in New Issue
Block a user