mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
Merge branch 'main' into Branch_2260
This commit is contained in:
@@ -5,6 +5,7 @@ from crewai.crew import Crew
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.llm import LLM
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
|
||||
@@ -21,6 +22,7 @@ __all__ = [
|
||||
"Process",
|
||||
"Task",
|
||||
"LLM",
|
||||
"BaseLLM",
|
||||
"Flow",
|
||||
"Knowledge",
|
||||
]
|
||||
|
||||
@@ -11,7 +11,7 @@ from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import BaseLLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.security import Fingerprint
|
||||
from crewai.task import Task
|
||||
@@ -71,10 +71,10 @@ class Agent(BaseAgent):
|
||||
default=True,
|
||||
description="Use system prompt for the agent.",
|
||||
)
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
llm: Union[str, InstanceOf[BaseLLM], Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
|
||||
function_calling_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
system_template: Optional[str] = Field(
|
||||
@@ -118,7 +118,9 @@ class Agent(BaseAgent):
|
||||
self.agent_ops_agent_name = self.role
|
||||
|
||||
self.llm = create_llm(self.llm)
|
||||
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
|
||||
if self.function_calling_llm and not isinstance(
|
||||
self.function_calling_llm, BaseLLM
|
||||
):
|
||||
self.function_calling_llm = create_llm(self.function_calling_llm)
|
||||
|
||||
if not self.agent_executor:
|
||||
@@ -140,15 +142,13 @@ class Agent(BaseAgent):
|
||||
self.embedder = crew_embedder
|
||||
|
||||
if self.knowledge_sources:
|
||||
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
|
||||
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
|
||||
if isinstance(self.knowledge_sources, list) and all(
|
||||
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
|
||||
):
|
||||
self.knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder=self.embedder,
|
||||
collection_name=knowledge_agent_name,
|
||||
collection_name=self.role,
|
||||
storage=self.knowledge_storage or None,
|
||||
)
|
||||
except (TypeError, ValueError) as e:
|
||||
|
||||
@@ -25,6 +25,7 @@ from crewai.tools.base_tool import BaseTool, Tool
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.converter import Converter
|
||||
from crewai.utilities.string_utils import interpolate_only
|
||||
|
||||
T = TypeVar("T", bound="BaseAgent")
|
||||
|
||||
@@ -333,9 +334,15 @@ class BaseAgent(ABC, BaseModel):
|
||||
self._original_backstory = self.backstory
|
||||
|
||||
if inputs:
|
||||
self.role = self._original_role.format(**inputs)
|
||||
self.goal = self._original_goal.format(**inputs)
|
||||
self.backstory = self._original_backstory.format(**inputs)
|
||||
self.role = interpolate_only(
|
||||
input_string=self._original_role, inputs=inputs
|
||||
)
|
||||
self.goal = interpolate_only(
|
||||
input_string=self._original_goal, inputs=inputs
|
||||
)
|
||||
self.backstory = interpolate_only(
|
||||
input_string=self._original_backstory, inputs=inputs
|
||||
)
|
||||
|
||||
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
|
||||
"""Set the cache handler for the agent.
|
||||
|
||||
@@ -13,7 +13,7 @@ from crewai.agents.parser import (
|
||||
OutputParserException,
|
||||
)
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import BaseLLM
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N, Printer
|
||||
@@ -61,7 +61,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
callbacks: List[Any] = [],
|
||||
):
|
||||
self._i18n: I18N = I18N()
|
||||
self.llm: LLM = llm
|
||||
self.llm: BaseLLM = llm
|
||||
self.task = task
|
||||
self.agent = agent
|
||||
self.crew = crew
|
||||
@@ -87,8 +87,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
|
||||
tool.name: tool for tool in self.tools
|
||||
}
|
||||
self.stop = stop_words
|
||||
self.llm.stop = list(set(self.llm.stop + self.stop))
|
||||
existing_stop = self.llm.stop or []
|
||||
self.llm.stop = list(
|
||||
set(
|
||||
existing_stop + self.stop
|
||||
if isinstance(existing_stop, list)
|
||||
else self.stop
|
||||
)
|
||||
)
|
||||
|
||||
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||
if "system" in self.prompt:
|
||||
|
||||
@@ -124,9 +124,9 @@ class CrewAgentParser:
|
||||
)
|
||||
|
||||
def _extract_thought(self, text: str) -> str:
|
||||
thought_index = text.find("\n\nAction")
|
||||
thought_index = text.find("\nAction")
|
||||
if thought_index == -1:
|
||||
thought_index = text.find("\n\nFinal Answer")
|
||||
thought_index = text.find("\nFinal Answer")
|
||||
if thought_index == -1:
|
||||
return ""
|
||||
thought = text[:thought_index].strip()
|
||||
@@ -136,7 +136,7 @@ class CrewAgentParser:
|
||||
|
||||
def _clean_action(self, text: str) -> str:
|
||||
"""Clean action string by removing non-essential formatting characters."""
|
||||
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
|
||||
return text.strip().strip("*").strip()
|
||||
|
||||
def _safe_repair_json(self, tool_input: str) -> str:
|
||||
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]
|
||||
|
||||
@@ -14,7 +14,7 @@ from packaging import version
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.crew import Crew
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import LLM, BaseLLM
|
||||
from crewai.types.crew_chat import ChatInputField, ChatInputs
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
@@ -116,7 +116,7 @@ def show_loading(event: threading.Event):
|
||||
print()
|
||||
|
||||
|
||||
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
|
||||
def initialize_chat_llm(crew: Crew) -> Optional[LLM | BaseLLM]:
|
||||
"""Initializes the chat LLM and handles exceptions."""
|
||||
try:
|
||||
return create_llm(crew.chat_llm)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import subprocess
|
||||
from functools import lru_cache
|
||||
|
||||
|
||||
class Repository:
|
||||
@@ -35,6 +36,7 @@ class Repository:
|
||||
encoding="utf-8",
|
||||
).strip()
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def is_git_repo(self) -> bool:
|
||||
"""Check if the current directory is a git repository."""
|
||||
try:
|
||||
|
||||
@@ -6,7 +6,7 @@ import warnings
|
||||
from concurrent.futures import Future
|
||||
from copy import copy as shallow_copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union, cast
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -26,7 +26,7 @@ from crewai.agents.cache import CacheHandler
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import LLM, BaseLLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
@@ -37,7 +37,7 @@ from crewai.task import Task
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.tools.base_tool import BaseTool, Tool
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -153,7 +153,7 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Metrics for the LLM usage during all tasks execution.",
|
||||
)
|
||||
manager_llm: Optional[Any] = Field(
|
||||
manager_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
manager_agent: Optional[BaseAgent] = Field(
|
||||
@@ -187,7 +187,7 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Maximum number of requests per minute for the crew execution to be respected.",
|
||||
)
|
||||
prompt_file: str = Field(
|
||||
prompt_file: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Path to the prompt json file to be used for the crew.",
|
||||
)
|
||||
@@ -199,7 +199,7 @@ class Crew(BaseModel):
|
||||
default=False,
|
||||
description="Plan the crew execution and add the plan to the crew.",
|
||||
)
|
||||
planning_llm: Optional[Any] = Field(
|
||||
planning_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
default=None,
|
||||
description="Language model that will run the AgentPlanner if planning is True.",
|
||||
)
|
||||
@@ -215,7 +215,7 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
|
||||
)
|
||||
chat_llm: Optional[Any] = Field(
|
||||
chat_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
default=None,
|
||||
description="LLM used to handle chatting with the crew.",
|
||||
)
|
||||
@@ -489,7 +489,7 @@ class Crew(BaseModel):
|
||||
task.key for task in self.tasks
|
||||
]
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
|
||||
@property
|
||||
def fingerprint(self) -> Fingerprint:
|
||||
"""
|
||||
@@ -819,7 +819,12 @@ class Crew(BaseModel):
|
||||
|
||||
# Determine which tools to use - task tools take precedence over agent tools
|
||||
tools_for_task = task.tools or agent_to_use.tools or []
|
||||
tools_for_task = self._prepare_tools(agent_to_use, task, tools_for_task)
|
||||
# Prepare tools and ensure they're compatible with task execution
|
||||
tools_for_task = self._prepare_tools(
|
||||
agent_to_use,
|
||||
task,
|
||||
cast(Union[List[Tool], List[BaseTool]], tools_for_task),
|
||||
)
|
||||
|
||||
self._log_task_start(task, agent_to_use.role)
|
||||
|
||||
@@ -838,7 +843,7 @@ class Crew(BaseModel):
|
||||
future = task.execute_async(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=tools_for_task,
|
||||
tools=cast(List[BaseTool], tools_for_task),
|
||||
)
|
||||
futures.append((task, future, task_index))
|
||||
else:
|
||||
@@ -850,7 +855,7 @@ class Crew(BaseModel):
|
||||
task_output = task.execute_sync(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=tools_for_task,
|
||||
tools=cast(List[BaseTool], tools_for_task),
|
||||
)
|
||||
task_outputs.append(task_output)
|
||||
self._process_task_result(task, task_output)
|
||||
@@ -888,10 +893,12 @@ class Crew(BaseModel):
|
||||
return None
|
||||
|
||||
def _prepare_tools(
|
||||
self, agent: BaseAgent, task: Task, tools: List[Tool]
|
||||
) -> List[Tool]:
|
||||
self, agent: BaseAgent, task: Task, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
# Add delegation tools if agent allows delegation
|
||||
if agent.allow_delegation:
|
||||
if hasattr(agent, "allow_delegation") and getattr(
|
||||
agent, "allow_delegation", False
|
||||
):
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
tools = self._update_manager_tools(task, tools)
|
||||
@@ -900,17 +907,24 @@ class Crew(BaseModel):
|
||||
"Manager agent is required for hierarchical process."
|
||||
)
|
||||
|
||||
elif agent and agent.allow_delegation:
|
||||
elif agent:
|
||||
tools = self._add_delegation_tools(task, tools)
|
||||
|
||||
# Add code execution tools if agent allows code execution
|
||||
if agent.allow_code_execution:
|
||||
if hasattr(agent, "allow_code_execution") and getattr(
|
||||
agent, "allow_code_execution", False
|
||||
):
|
||||
tools = self._add_code_execution_tools(agent, tools)
|
||||
|
||||
if agent and agent.multimodal:
|
||||
if (
|
||||
agent
|
||||
and hasattr(agent, "multimodal")
|
||||
and getattr(agent, "multimodal", False)
|
||||
):
|
||||
tools = self._add_multimodal_tools(agent, tools)
|
||||
|
||||
return tools
|
||||
# Return a List[BaseTool] which is compatible with both Task.execute_sync and Task.execute_async
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
|
||||
if self.process == Process.hierarchical:
|
||||
@@ -918,11 +932,13 @@ class Crew(BaseModel):
|
||||
return task.agent
|
||||
|
||||
def _merge_tools(
|
||||
self, existing_tools: List[Tool], new_tools: List[Tool]
|
||||
) -> List[Tool]:
|
||||
self,
|
||||
existing_tools: Union[List[Tool], List[BaseTool]],
|
||||
new_tools: Union[List[Tool], List[BaseTool]],
|
||||
) -> List[BaseTool]:
|
||||
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
|
||||
if not new_tools:
|
||||
return existing_tools
|
||||
return cast(List[BaseTool], existing_tools)
|
||||
|
||||
# Create mapping of tool names to new tools
|
||||
new_tool_map = {tool.name: tool for tool in new_tools}
|
||||
@@ -933,23 +949,41 @@ class Crew(BaseModel):
|
||||
# Add all new tools
|
||||
tools.extend(new_tools)
|
||||
|
||||
return tools
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _inject_delegation_tools(
|
||||
self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]
|
||||
):
|
||||
delegation_tools = task_agent.get_delegation_tools(agents)
|
||||
return self._merge_tools(tools, delegation_tools)
|
||||
self,
|
||||
tools: Union[List[Tool], List[BaseTool]],
|
||||
task_agent: BaseAgent,
|
||||
agents: List[BaseAgent],
|
||||
) -> List[BaseTool]:
|
||||
if hasattr(task_agent, "get_delegation_tools"):
|
||||
delegation_tools = task_agent.get_delegation_tools(agents)
|
||||
# Cast delegation_tools to the expected type for _merge_tools
|
||||
return self._merge_tools(tools, cast(List[BaseTool], delegation_tools))
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
multimodal_tools = agent.get_multimodal_tools()
|
||||
return self._merge_tools(tools, multimodal_tools)
|
||||
def _add_multimodal_tools(
|
||||
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
if hasattr(agent, "get_multimodal_tools"):
|
||||
multimodal_tools = agent.get_multimodal_tools()
|
||||
# Cast multimodal_tools to the expected type for _merge_tools
|
||||
return self._merge_tools(tools, cast(List[BaseTool], multimodal_tools))
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
code_tools = agent.get_code_execution_tools()
|
||||
return self._merge_tools(tools, code_tools)
|
||||
def _add_code_execution_tools(
|
||||
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
if hasattr(agent, "get_code_execution_tools"):
|
||||
code_tools = agent.get_code_execution_tools()
|
||||
# Cast code_tools to the expected type for _merge_tools
|
||||
return self._merge_tools(tools, cast(List[BaseTool], code_tools))
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
|
||||
def _add_delegation_tools(
|
||||
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
|
||||
if not tools:
|
||||
@@ -957,7 +991,7 @@ class Crew(BaseModel):
|
||||
tools = self._inject_delegation_tools(
|
||||
tools, task.agent, agents_for_delegation
|
||||
)
|
||||
return tools
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _log_task_start(self, task: Task, role: str = "None"):
|
||||
if self.output_log_file:
|
||||
@@ -965,7 +999,9 @@ class Crew(BaseModel):
|
||||
task_name=task.name, task=task.description, agent=role, status="started"
|
||||
)
|
||||
|
||||
def _update_manager_tools(self, task: Task, tools: List[Tool]):
|
||||
def _update_manager_tools(
|
||||
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
if self.manager_agent:
|
||||
if task.agent:
|
||||
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
|
||||
@@ -973,7 +1009,7 @@ class Crew(BaseModel):
|
||||
tools = self._inject_delegation_tools(
|
||||
tools, self.manager_agent, self.agents
|
||||
)
|
||||
return tools
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
context = (
|
||||
@@ -1229,13 +1265,14 @@ class Crew(BaseModel):
|
||||
def test(
|
||||
self,
|
||||
n_iterations: int,
|
||||
eval_llm: Union[str, InstanceOf[LLM]],
|
||||
eval_llm: Union[str, InstanceOf[BaseLLM]],
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
|
||||
try:
|
||||
eval_llm = create_llm(eval_llm)
|
||||
if not eval_llm:
|
||||
# Create LLM instance and ensure it's of type LLM for CrewEvaluator
|
||||
llm_instance = create_llm(eval_llm)
|
||||
if not llm_instance:
|
||||
raise ValueError("Failed to create LLM instance.")
|
||||
|
||||
crewai_event_bus.emit(
|
||||
@@ -1243,12 +1280,12 @@ class Crew(BaseModel):
|
||||
CrewTestStartedEvent(
|
||||
crew_name=self.name or "crew",
|
||||
n_iterations=n_iterations,
|
||||
eval_llm=eval_llm,
|
||||
eval_llm=llm_instance,
|
||||
inputs=inputs,
|
||||
),
|
||||
)
|
||||
test_crew = self.copy()
|
||||
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
|
||||
evaluator = CrewEvaluator(test_crew, llm_instance)
|
||||
|
||||
for i in range(1, n_iterations + 1):
|
||||
evaluator.set_iteration(i)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
import uuid
|
||||
from datetime import date, datetime
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
@@ -32,7 +33,7 @@ def export_state(flow: Flow) -> dict[str, Serializable]:
|
||||
|
||||
|
||||
def to_serializable(
|
||||
obj: Any, max_depth: int = 5, _current_depth: int = 0
|
||||
obj: Any, exclude: set[str] | None = None, max_depth: int = 5, _current_depth: int = 0
|
||||
) -> Serializable:
|
||||
"""Converts a Python object into a JSON-compatible representation.
|
||||
|
||||
@@ -42,6 +43,7 @@ def to_serializable(
|
||||
|
||||
Args:
|
||||
obj (Any): Object to transform.
|
||||
exclude (set[str], optional): Set of keys to exclude from the result.
|
||||
max_depth (int, optional): Maximum recursion depth. Defaults to 5.
|
||||
|
||||
Returns:
|
||||
@@ -50,21 +52,39 @@ def to_serializable(
|
||||
if _current_depth >= max_depth:
|
||||
return repr(obj)
|
||||
|
||||
if exclude is None:
|
||||
exclude = set()
|
||||
|
||||
if isinstance(obj, (str, int, float, bool, type(None))):
|
||||
return obj
|
||||
elif isinstance(obj, uuid.UUID):
|
||||
return str(obj)
|
||||
elif isinstance(obj, (date, datetime)):
|
||||
return obj.isoformat()
|
||||
elif isinstance(obj, (list, tuple, set)):
|
||||
return [to_serializable(item, max_depth, _current_depth + 1) for item in obj]
|
||||
return [
|
||||
to_serializable(
|
||||
item, max_depth=max_depth, _current_depth=_current_depth + 1
|
||||
)
|
||||
for item in obj
|
||||
]
|
||||
elif isinstance(obj, dict):
|
||||
return {
|
||||
_to_serializable_key(key): to_serializable(
|
||||
value, max_depth, _current_depth + 1
|
||||
obj=value,
|
||||
exclude=exclude,
|
||||
max_depth=max_depth,
|
||||
_current_depth=_current_depth + 1,
|
||||
)
|
||||
for key, value in obj.items()
|
||||
if key not in exclude
|
||||
}
|
||||
elif isinstance(obj, BaseModel):
|
||||
return to_serializable(obj.model_dump(), max_depth, _current_depth + 1)
|
||||
return to_serializable(
|
||||
obj=obj.model_dump(exclude=exclude),
|
||||
max_depth=max_depth,
|
||||
_current_depth=_current_depth + 1,
|
||||
)
|
||||
else:
|
||||
return repr(obj)
|
||||
|
||||
|
||||
@@ -14,6 +14,7 @@ from chromadb.config import Settings
|
||||
|
||||
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.chromadb import sanitize_collection_name
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
@@ -99,7 +100,8 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
)
|
||||
if self.app:
|
||||
self.collection = self.app.get_or_create_collection(
|
||||
name=collection_name, embedding_function=self.embedder
|
||||
name=sanitize_collection_name(collection_name),
|
||||
embedding_function=self.embedder,
|
||||
)
|
||||
else:
|
||||
raise Exception("Vector Database Client not initialized")
|
||||
|
||||
@@ -40,6 +40,7 @@ with warnings.catch_warnings():
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
@@ -114,6 +115,60 @@ LLM_CONTEXT_WINDOW_SIZES = {
|
||||
"Llama-3.2-11B-Vision-Instruct": 16384,
|
||||
"Meta-Llama-3.2-3B-Instruct": 4096,
|
||||
"Meta-Llama-3.2-1B-Instruct": 16384,
|
||||
# bedrock
|
||||
"us.amazon.nova-pro-v1:0": 300000,
|
||||
"us.amazon.nova-micro-v1:0": 128000,
|
||||
"us.amazon.nova-lite-v1:0": 300000,
|
||||
"us.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
|
||||
"us.anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
|
||||
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
|
||||
"us.anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
|
||||
"us.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
|
||||
"us.anthropic.claude-3-opus-20240229-v1:0": 200000,
|
||||
"us.anthropic.claude-3-haiku-20240307-v1:0": 200000,
|
||||
"us.meta.llama3-2-11b-instruct-v1:0": 128000,
|
||||
"us.meta.llama3-2-3b-instruct-v1:0": 131000,
|
||||
"us.meta.llama3-2-90b-instruct-v1:0": 128000,
|
||||
"us.meta.llama3-2-1b-instruct-v1:0": 131000,
|
||||
"us.meta.llama3-1-8b-instruct-v1:0": 128000,
|
||||
"us.meta.llama3-1-70b-instruct-v1:0": 128000,
|
||||
"us.meta.llama3-3-70b-instruct-v1:0": 128000,
|
||||
"us.meta.llama3-1-405b-instruct-v1:0": 128000,
|
||||
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
|
||||
"eu.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
|
||||
"eu.anthropic.claude-3-haiku-20240307-v1:0": 200000,
|
||||
"eu.meta.llama3-2-3b-instruct-v1:0": 131000,
|
||||
"eu.meta.llama3-2-1b-instruct-v1:0": 131000,
|
||||
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
|
||||
"apac.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
|
||||
"apac.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
|
||||
"apac.anthropic.claude-3-haiku-20240307-v1:0": 200000,
|
||||
"amazon.nova-pro-v1:0": 300000,
|
||||
"amazon.nova-micro-v1:0": 128000,
|
||||
"amazon.nova-lite-v1:0": 300000,
|
||||
"anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
|
||||
"anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
|
||||
"anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
|
||||
"anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
|
||||
"anthropic.claude-3-sonnet-20240229-v1:0": 200000,
|
||||
"anthropic.claude-3-opus-20240229-v1:0": 200000,
|
||||
"anthropic.claude-3-haiku-20240307-v1:0": 200000,
|
||||
"anthropic.claude-v2:1": 200000,
|
||||
"anthropic.claude-v2": 100000,
|
||||
"anthropic.claude-instant-v1": 100000,
|
||||
"meta.llama3-1-405b-instruct-v1:0": 128000,
|
||||
"meta.llama3-1-70b-instruct-v1:0": 128000,
|
||||
"meta.llama3-1-8b-instruct-v1:0": 128000,
|
||||
"meta.llama3-70b-instruct-v1:0": 8000,
|
||||
"meta.llama3-8b-instruct-v1:0": 8000,
|
||||
"amazon.titan-text-lite-v1": 4000,
|
||||
"amazon.titan-text-express-v1": 8000,
|
||||
"cohere.command-text-v14": 4000,
|
||||
"ai21.j2-mid-v1": 8191,
|
||||
"ai21.j2-ultra-v1": 8191,
|
||||
"ai21.jamba-instruct-v1:0": 256000,
|
||||
"mistral.mistral-7b-instruct-v0:2": 32000,
|
||||
"mistral.mixtral-8x7b-instruct-v0:1": 32000,
|
||||
# mistral
|
||||
"mistral-tiny": 32768,
|
||||
"mistral-small-latest": 32768,
|
||||
@@ -164,7 +219,7 @@ class StreamingChoices(TypedDict):
|
||||
finish_reason: Optional[str]
|
||||
|
||||
|
||||
class LLM:
|
||||
class LLM(BaseLLM):
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
|
||||
91
src/crewai/llms/base_llm.py
Normal file
91
src/crewai/llms/base_llm.py
Normal file
@@ -0,0 +1,91 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
|
||||
class BaseLLM(ABC):
|
||||
"""Abstract base class for LLM implementations.
|
||||
|
||||
This class defines the interface that all LLM implementations must follow.
|
||||
Users can extend this class to create custom LLM implementations that don't
|
||||
rely on litellm's authentication mechanism.
|
||||
|
||||
Custom LLM implementations should handle error cases gracefully, including
|
||||
timeouts, authentication failures, and malformed responses. They should also
|
||||
implement proper validation for input parameters and provide clear error
|
||||
messages when things go wrong.
|
||||
|
||||
Attributes:
|
||||
stop (list): A list of stop sequences that the LLM should use to stop generation.
|
||||
This is used by the CrewAgentExecutor and other components.
|
||||
"""
|
||||
|
||||
model: str
|
||||
temperature: Optional[float] = None
|
||||
stop: Optional[List[str]] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
temperature: Optional[float] = None,
|
||||
):
|
||||
"""Initialize the BaseLLM with default attributes.
|
||||
|
||||
This constructor sets default values for attributes that are expected
|
||||
by the CrewAgentExecutor and other components.
|
||||
|
||||
All custom LLM implementations should call super().__init__() to ensure
|
||||
that these default attributes are properly initialized.
|
||||
"""
|
||||
self.model = model
|
||||
self.temperature = temperature
|
||||
self.stop = []
|
||||
|
||||
@abstractmethod
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
"""Call the LLM with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Input messages for the LLM.
|
||||
Can be a string or list of message dictionaries.
|
||||
If string, it will be converted to a single user message.
|
||||
If list, each dict must have 'role' and 'content' keys.
|
||||
tools: Optional list of tool schemas for function calling.
|
||||
Each tool should define its name, description, and parameters.
|
||||
callbacks: Optional list of callback functions to be executed
|
||||
during and after the LLM call.
|
||||
available_functions: Optional dict mapping function names to callables
|
||||
that can be invoked by the LLM.
|
||||
|
||||
Returns:
|
||||
Either a text response from the LLM (str) or
|
||||
the result of a tool function call (Any).
|
||||
|
||||
Raises:
|
||||
ValueError: If the messages format is invalid.
|
||||
TimeoutError: If the LLM request times out.
|
||||
RuntimeError: If the LLM request fails for other reasons.
|
||||
"""
|
||||
pass
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Check if the LLM supports stop words.
|
||||
|
||||
Returns:
|
||||
bool: True if the LLM supports stop words, False otherwise.
|
||||
"""
|
||||
return True # Default implementation assumes support for stop words
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Get the context window size for the LLM.
|
||||
|
||||
Returns:
|
||||
int: The number of tokens/characters the model can handle.
|
||||
"""
|
||||
# Default implementation - subclasses should override with model-specific values
|
||||
return 4096
|
||||
38
src/crewai/llms/third_party/ai_suite.py
vendored
Normal file
38
src/crewai/llms/third_party/ai_suite.py
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import aisuite as ai
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
|
||||
|
||||
class AISuiteLLM(BaseLLM):
|
||||
def __init__(self, model: str, temperature: Optional[float] = None, **kwargs):
|
||||
super().__init__(model, temperature, **kwargs)
|
||||
self.client = ai.Client()
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
completion_params = self._prepare_completion_params(messages, tools)
|
||||
response = self.client.chat.completions.create(**completion_params)
|
||||
|
||||
return response.choices[0].message.content
|
||||
|
||||
def _prepare_completion_params(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
) -> Dict[str, Any]:
|
||||
return {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"temperature": self.temperature,
|
||||
"tools": tools,
|
||||
}
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
return False
|
||||
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from mem0 import MemoryClient
|
||||
from mem0 import Memory, MemoryClient
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
@@ -32,13 +32,16 @@ class Mem0Storage(Storage):
|
||||
mem0_org_id = config.get("org_id")
|
||||
mem0_project_id = config.get("project_id")
|
||||
|
||||
# Initialize MemoryClient with available parameters
|
||||
if mem0_org_id and mem0_project_id:
|
||||
self.memory = MemoryClient(
|
||||
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
|
||||
)
|
||||
# Initialize MemoryClient or Memory based on the presence of the mem0_api_key
|
||||
if mem0_api_key:
|
||||
if mem0_org_id and mem0_project_id:
|
||||
self.memory = MemoryClient(
|
||||
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
|
||||
)
|
||||
else:
|
||||
self.memory = MemoryClient(api_key=mem0_api_key)
|
||||
else:
|
||||
self.memory = MemoryClient(api_key=mem0_api_key)
|
||||
self.memory = Memory() # Fallback to Memory if no Mem0 API key is provided
|
||||
|
||||
def _sanitize_role(self, role: str) -> str:
|
||||
"""
|
||||
|
||||
@@ -2,6 +2,7 @@ import datetime
|
||||
import inspect
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import threading
|
||||
import uuid
|
||||
from concurrent.futures import Future
|
||||
@@ -49,6 +50,7 @@ from crewai.utilities.events import (
|
||||
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
|
||||
from crewai.utilities.i18n import I18N
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.string_utils import interpolate_only
|
||||
|
||||
|
||||
class Task(BaseModel):
|
||||
@@ -507,7 +509,9 @@ class Task(BaseModel):
|
||||
return
|
||||
|
||||
try:
|
||||
self.description = self._original_description.format(**inputs)
|
||||
self.description = interpolate_only(
|
||||
input_string=self._original_description, inputs=inputs
|
||||
)
|
||||
except KeyError as e:
|
||||
raise ValueError(
|
||||
f"Missing required template variable '{e.args[0]}' in description"
|
||||
@@ -516,7 +520,7 @@ class Task(BaseModel):
|
||||
raise ValueError(f"Error interpolating description: {str(e)}") from e
|
||||
|
||||
try:
|
||||
self.expected_output = self.interpolate_only(
|
||||
self.expected_output = interpolate_only(
|
||||
input_string=self._original_expected_output, inputs=inputs
|
||||
)
|
||||
except (KeyError, ValueError) as e:
|
||||
@@ -524,7 +528,7 @@ class Task(BaseModel):
|
||||
|
||||
if self.output_file is not None:
|
||||
try:
|
||||
self.output_file = self.interpolate_only(
|
||||
self.output_file = interpolate_only(
|
||||
input_string=self._original_output_file, inputs=inputs
|
||||
)
|
||||
except (KeyError, ValueError) as e:
|
||||
@@ -555,72 +559,6 @@ class Task(BaseModel):
|
||||
f"\n\n{conversation_instruction}\n\n{conversation_history}"
|
||||
)
|
||||
|
||||
def interpolate_only(
|
||||
self,
|
||||
input_string: Optional[str],
|
||||
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]],
|
||||
) -> str:
|
||||
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
|
||||
|
||||
Args:
|
||||
input_string: The string containing template variables to interpolate.
|
||||
Can be None or empty, in which case an empty string is returned.
|
||||
inputs: Dictionary mapping template variables to their values.
|
||||
Supported value types are strings, integers, floats, and dicts/lists
|
||||
containing only these types and other nested dicts/lists.
|
||||
|
||||
Returns:
|
||||
The interpolated string with all template variables replaced with their values.
|
||||
Empty string if input_string is None or empty.
|
||||
|
||||
Raises:
|
||||
ValueError: If a value contains unsupported types
|
||||
"""
|
||||
|
||||
# Validation function for recursive type checking
|
||||
def validate_type(value: Any) -> None:
|
||||
if value is None:
|
||||
return
|
||||
if isinstance(value, (str, int, float, bool)):
|
||||
return
|
||||
if isinstance(value, (dict, list)):
|
||||
for item in value.values() if isinstance(value, dict) else value:
|
||||
validate_type(item)
|
||||
return
|
||||
raise ValueError(
|
||||
f"Unsupported type {type(value).__name__} in inputs. "
|
||||
"Only str, int, float, bool, dict, and list are allowed."
|
||||
)
|
||||
|
||||
# Validate all input values
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
validate_type(value)
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
|
||||
|
||||
if input_string is None or not input_string:
|
||||
return ""
|
||||
if "{" not in input_string and "}" not in input_string:
|
||||
return input_string
|
||||
if not inputs:
|
||||
raise ValueError(
|
||||
"Inputs dictionary cannot be empty when interpolating variables"
|
||||
)
|
||||
try:
|
||||
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
|
||||
|
||||
for key in inputs.keys():
|
||||
escaped_string = escaped_string.replace(f"{{{{{key}}}}}", f"{{{key}}}")
|
||||
|
||||
return escaped_string.format(**inputs)
|
||||
except KeyError as e:
|
||||
raise KeyError(
|
||||
f"Template variable '{e.args[0]}' not found in inputs dictionary"
|
||||
) from e
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Error during string interpolation: {str(e)}") from e
|
||||
|
||||
def increment_tools_errors(self) -> None:
|
||||
"""Increment the tools errors counter."""
|
||||
self.tools_errors += 1
|
||||
@@ -634,7 +572,15 @@ class Task(BaseModel):
|
||||
def copy(
|
||||
self, agents: List["BaseAgent"], task_mapping: Dict[str, "Task"]
|
||||
) -> "Task":
|
||||
"""Create a deep copy of the Task."""
|
||||
"""Creates a deep copy of the Task while preserving its original class type.
|
||||
|
||||
Args:
|
||||
agents: List of agents available for the task.
|
||||
task_mapping: Dictionary mapping task IDs to Task instances.
|
||||
|
||||
Returns:
|
||||
A copy of the task with the same class type as the original.
|
||||
"""
|
||||
exclude = {
|
||||
"id",
|
||||
"agent",
|
||||
@@ -657,7 +603,7 @@ class Task(BaseModel):
|
||||
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
|
||||
cloned_tools = copy(self.tools) if self.tools else []
|
||||
|
||||
copied_task = Task(
|
||||
copied_task = self.__class__(
|
||||
**copied_data,
|
||||
context=cloned_context,
|
||||
agent=cloned_agent,
|
||||
|
||||
@@ -281,8 +281,16 @@ class Telemetry:
|
||||
return self._safe_telemetry_operation(operation)
|
||||
|
||||
def task_ended(self, span: Span, task: Task, crew: Crew):
|
||||
"""Records task execution in a crew."""
|
||||
"""Records the completion of a task execution in a crew.
|
||||
|
||||
Args:
|
||||
span (Span): The OpenTelemetry span tracking the task execution
|
||||
task (Task): The task that was completed
|
||||
crew (Crew): The crew context in which the task was executed
|
||||
|
||||
Note:
|
||||
If share_crew is enabled, this will also record the task output
|
||||
"""
|
||||
def operation():
|
||||
if crew.share_crew:
|
||||
self._add_attribute(
|
||||
@@ -297,8 +305,13 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def tool_repeated_usage(self, llm: Any, tool_name: str, attempts: int):
|
||||
"""Records the repeated usage 'error' of a tool by an agent."""
|
||||
"""Records when a tool is used repeatedly, which might indicate an issue.
|
||||
|
||||
Args:
|
||||
llm (Any): The language model being used
|
||||
tool_name (str): Name of the tool being repeatedly used
|
||||
attempts (int): Number of attempts made with this tool
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Tool Repeated Usage")
|
||||
@@ -317,8 +330,13 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def tool_usage(self, llm: Any, tool_name: str, attempts: int):
|
||||
"""Records the usage of a tool by an agent."""
|
||||
"""Records the usage of a tool by an agent.
|
||||
|
||||
Args:
|
||||
llm (Any): The language model being used
|
||||
tool_name (str): Name of the tool being used
|
||||
attempts (int): Number of attempts made with this tool
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Tool Usage")
|
||||
@@ -337,8 +355,11 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def tool_usage_error(self, llm: Any):
|
||||
"""Records the usage of a tool by an agent."""
|
||||
"""Records when a tool usage results in an error.
|
||||
|
||||
Args:
|
||||
llm (Any): The language model being used when the error occurred
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Tool Usage Error")
|
||||
@@ -357,6 +378,14 @@ class Telemetry:
|
||||
def individual_test_result_span(
|
||||
self, crew: Crew, quality: float, exec_time: int, model_name: str
|
||||
):
|
||||
"""Records individual test results for a crew execution.
|
||||
|
||||
Args:
|
||||
crew (Crew): The crew being tested
|
||||
quality (float): Quality score of the execution
|
||||
exec_time (int): Execution time in seconds
|
||||
model_name (str): Name of the model used
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Crew Individual Test Result")
|
||||
@@ -383,6 +412,14 @@ class Telemetry:
|
||||
inputs: dict[str, Any] | None,
|
||||
model_name: str,
|
||||
):
|
||||
"""Records the execution of a test suite for a crew.
|
||||
|
||||
Args:
|
||||
crew (Crew): The crew being tested
|
||||
iterations (int): Number of test iterations
|
||||
inputs (dict[str, Any] | None): Input parameters for the test
|
||||
model_name (str): Name of the model used in testing
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Crew Test Execution")
|
||||
@@ -408,6 +445,7 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def deploy_signup_error_span(self):
|
||||
"""Records when an error occurs during the deployment signup process."""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Deploy Signup Error")
|
||||
@@ -417,6 +455,11 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def start_deployment_span(self, uuid: Optional[str] = None):
|
||||
"""Records the start of a deployment process.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): Unique identifier for the deployment
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Start Deployment")
|
||||
@@ -428,6 +471,7 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def create_crew_deployment_span(self):
|
||||
"""Records the creation of a new crew deployment."""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Create Crew Deployment")
|
||||
@@ -437,6 +481,12 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
|
||||
"""Records the retrieval of crew logs.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): Unique identifier for the crew
|
||||
log_type (str, optional): Type of logs being retrieved. Defaults to "deployment".
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Get Crew Logs")
|
||||
@@ -449,6 +499,11 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def remove_crew_span(self, uuid: Optional[str] = None):
|
||||
"""Records the removal of a crew.
|
||||
|
||||
Args:
|
||||
uuid (Optional[str]): Unique identifier for the crew being removed
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Remove Crew")
|
||||
@@ -574,6 +629,11 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def flow_creation_span(self, flow_name: str):
|
||||
"""Records the creation of a new flow.
|
||||
|
||||
Args:
|
||||
flow_name (str): Name of the flow being created
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Flow Creation")
|
||||
@@ -584,6 +644,12 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def flow_plotting_span(self, flow_name: str, node_names: list[str]):
|
||||
"""Records flow visualization/plotting activity.
|
||||
|
||||
Args:
|
||||
flow_name (str): Name of the flow being plotted
|
||||
node_names (list[str]): List of node names in the flow
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Flow Plotting")
|
||||
@@ -595,6 +661,12 @@ class Telemetry:
|
||||
self._safe_telemetry_operation(operation)
|
||||
|
||||
def flow_execution_span(self, flow_name: str, node_names: list[str]):
|
||||
"""Records the execution of a flow.
|
||||
|
||||
Args:
|
||||
flow_name (str): Name of the flow being executed
|
||||
node_names (list[str]): List of nodes being executed in the flow
|
||||
"""
|
||||
def operation():
|
||||
tracer = trace.get_tracer("crewai.telemetry")
|
||||
span = tracer.start_span("Flow Execution")
|
||||
|
||||
@@ -455,7 +455,7 @@ class ToolUsage:
|
||||
|
||||
# Attempt 4: Repair JSON
|
||||
try:
|
||||
repaired_input = repair_json(tool_input)
|
||||
repaired_input = repair_json(tool_input, skip_json_loads=True)
|
||||
self._printer.print(
|
||||
content=f"Repaired JSON: {repaired_input}", color="blue"
|
||||
)
|
||||
|
||||
62
src/crewai/utilities/chromadb.py
Normal file
62
src/crewai/utilities/chromadb.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import re
|
||||
from typing import Optional
|
||||
|
||||
MIN_COLLECTION_LENGTH = 3
|
||||
MAX_COLLECTION_LENGTH = 63
|
||||
DEFAULT_COLLECTION = "default_collection"
|
||||
|
||||
# Compiled regex patterns for better performance
|
||||
INVALID_CHARS_PATTERN = re.compile(r"[^a-zA-Z0-9_-]")
|
||||
IPV4_PATTERN = re.compile(r"^(\d{1,3}\.){3}\d{1,3}$")
|
||||
|
||||
|
||||
def is_ipv4_pattern(name: str) -> bool:
|
||||
"""
|
||||
Check if a string matches an IPv4 address pattern.
|
||||
|
||||
Args:
|
||||
name: The string to check
|
||||
|
||||
Returns:
|
||||
True if the string matches an IPv4 pattern, False otherwise
|
||||
"""
|
||||
return bool(IPV4_PATTERN.match(name))
|
||||
|
||||
|
||||
def sanitize_collection_name(name: Optional[str]) -> str:
|
||||
"""
|
||||
Sanitize a collection name to meet ChromaDB requirements:
|
||||
1. 3-63 characters long
|
||||
2. Starts and ends with alphanumeric character
|
||||
3. Contains only alphanumeric characters, underscores, or hyphens
|
||||
4. No consecutive periods
|
||||
5. Not a valid IPv4 address
|
||||
|
||||
Args:
|
||||
name: The original collection name to sanitize
|
||||
|
||||
Returns:
|
||||
A sanitized collection name that meets ChromaDB requirements
|
||||
"""
|
||||
if not name:
|
||||
return DEFAULT_COLLECTION
|
||||
|
||||
if is_ipv4_pattern(name):
|
||||
name = f"ip_{name}"
|
||||
|
||||
sanitized = INVALID_CHARS_PATTERN.sub("_", name)
|
||||
|
||||
if not sanitized[0].isalnum():
|
||||
sanitized = "a" + sanitized
|
||||
|
||||
if not sanitized[-1].isalnum():
|
||||
sanitized = sanitized[:-1] + "z"
|
||||
|
||||
if len(sanitized) < MIN_COLLECTION_LENGTH:
|
||||
sanitized = sanitized + "x" * (MIN_COLLECTION_LENGTH - len(sanitized))
|
||||
if len(sanitized) > MAX_COLLECTION_LENGTH:
|
||||
sanitized = sanitized[:MAX_COLLECTION_LENGTH]
|
||||
if not sanitized[-1].isalnum():
|
||||
sanitized = sanitized[:-1] + "z"
|
||||
|
||||
return sanitized
|
||||
@@ -6,7 +6,7 @@ from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import BaseLLM
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
@@ -24,7 +24,7 @@ class CrewEvaluator:
|
||||
|
||||
Attributes:
|
||||
crew (Crew): The crew of agents to evaluate.
|
||||
eval_llm (LLM): Language model instance to use for evaluations
|
||||
eval_llm (BaseLLM): Language model instance to use for evaluations
|
||||
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
|
||||
iteration (int): The current iteration of the evaluation.
|
||||
"""
|
||||
@@ -33,7 +33,7 @@ class CrewEvaluator:
|
||||
run_execution_times: defaultdict = defaultdict(list)
|
||||
iteration: int = 0
|
||||
|
||||
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
|
||||
def __init__(self, crew, eval_llm: InstanceOf[BaseLLM]):
|
||||
self.crew = crew
|
||||
self.llm = eval_llm
|
||||
self._telemetry = Telemetry()
|
||||
|
||||
@@ -507,9 +507,10 @@ class ConsoleFormatter:
|
||||
|
||||
# Remove the thinking status node when complete
|
||||
if "Thinking" in str(tool_branch.label):
|
||||
agent_branch.children.remove(tool_branch)
|
||||
self.print(crew_tree)
|
||||
self.print()
|
||||
if tool_branch in agent_branch.children:
|
||||
agent_branch.children.remove(tool_branch)
|
||||
self.print(crew_tree)
|
||||
self.print()
|
||||
|
||||
def handle_llm_call_failed(
|
||||
self, tool_branch: Optional[Tree], error: str, crew_tree: Optional[Tree]
|
||||
@@ -587,6 +588,7 @@ class ConsoleFormatter:
|
||||
for child in flow_tree.children:
|
||||
if "Running tests" in str(child.label):
|
||||
child.label = Text("✅ Tests completed successfully", style="green")
|
||||
break
|
||||
|
||||
self.print(flow_tree)
|
||||
self.print()
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from typing import List
|
||||
import re
|
||||
from typing import TYPE_CHECKING, List
|
||||
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
if TYPE_CHECKING:
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
|
||||
|
||||
def aggregate_raw_outputs_from_task_outputs(task_outputs: List[TaskOutput]) -> str:
|
||||
def aggregate_raw_outputs_from_task_outputs(task_outputs: List["TaskOutput"]) -> str:
|
||||
"""Generate string context from the task outputs."""
|
||||
dividers = "\n\n----------\n\n"
|
||||
|
||||
@@ -13,7 +15,7 @@ def aggregate_raw_outputs_from_task_outputs(task_outputs: List[TaskOutput]) -> s
|
||||
return context
|
||||
|
||||
|
||||
def aggregate_raw_outputs_from_tasks(tasks: List[Task]) -> str:
|
||||
def aggregate_raw_outputs_from_tasks(tasks: List["Task"]) -> str:
|
||||
"""Generate string context from the tasks."""
|
||||
task_outputs = [task.output for task in tasks if task.output is not None]
|
||||
|
||||
|
||||
@@ -2,28 +2,28 @@ import os
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import LLM, BaseLLM
|
||||
|
||||
|
||||
def create_llm(
|
||||
llm_value: Union[str, LLM, Any, None] = None,
|
||||
) -> Optional[LLM]:
|
||||
) -> Optional[LLM | BaseLLM]:
|
||||
"""
|
||||
Creates or returns an LLM instance based on the given llm_value.
|
||||
|
||||
Args:
|
||||
llm_value (str | LLM | Any | None):
|
||||
llm_value (str | BaseLLM | Any | None):
|
||||
- str: The model name (e.g., "gpt-4").
|
||||
- LLM: Already instantiated LLM, returned as-is.
|
||||
- BaseLLM: Already instantiated BaseLLM (including LLM), returned as-is.
|
||||
- Any: Attempt to extract known attributes like model_name, temperature, etc.
|
||||
- None: Use environment-based or fallback default model.
|
||||
|
||||
Returns:
|
||||
An LLM instance if successful, or None if something fails.
|
||||
A BaseLLM instance if successful, or None if something fails.
|
||||
"""
|
||||
|
||||
# 1) If llm_value is already an LLM object, return it directly
|
||||
if isinstance(llm_value, LLM):
|
||||
# 1) If llm_value is already a BaseLLM or LLM object, return it directly
|
||||
if isinstance(llm_value, LLM) or isinstance(llm_value, BaseLLM):
|
||||
return llm_value
|
||||
|
||||
# 2) If llm_value is a string (model name)
|
||||
|
||||
@@ -96,6 +96,10 @@ class CrewPlanner:
|
||||
tasks_summary = []
|
||||
for idx, task in enumerate(self.tasks):
|
||||
knowledge_list = self._get_agent_knowledge(task)
|
||||
agent_tools = (
|
||||
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
|
||||
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
|
||||
)
|
||||
task_summary = f"""
|
||||
Task Number {idx + 1} - {task.description}
|
||||
"task_description": {task.description}
|
||||
@@ -103,10 +107,7 @@ class CrewPlanner:
|
||||
"agent": {task.agent.role if task.agent else "None"}
|
||||
"agent_goal": {task.agent.goal if task.agent else "None"}
|
||||
"task_tools": {task.tools}
|
||||
"agent_tools": %s%s""" % (
|
||||
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
|
||||
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
|
||||
)
|
||||
"agent_tools": {"".join(agent_tools)}"""
|
||||
|
||||
tasks_summary.append(task_summary)
|
||||
return " ".join(tasks_summary)
|
||||
|
||||
82
src/crewai/utilities/string_utils.py
Normal file
82
src/crewai/utilities/string_utils.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import re
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
|
||||
def interpolate_only(
|
||||
input_string: Optional[str],
|
||||
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]],
|
||||
) -> str:
|
||||
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
|
||||
Only interpolates placeholders that follow the pattern {variable_name} where
|
||||
variable_name starts with a letter/underscore and contains only letters, numbers, and underscores.
|
||||
|
||||
Args:
|
||||
input_string: The string containing template variables to interpolate.
|
||||
Can be None or empty, in which case an empty string is returned.
|
||||
inputs: Dictionary mapping template variables to their values.
|
||||
Supported value types are strings, integers, floats, and dicts/lists
|
||||
containing only these types and other nested dicts/lists.
|
||||
|
||||
Returns:
|
||||
The interpolated string with all template variables replaced with their values.
|
||||
Empty string if input_string is None or empty.
|
||||
|
||||
Raises:
|
||||
ValueError: If a value contains unsupported types or a template variable is missing
|
||||
"""
|
||||
|
||||
# Validation function for recursive type checking
|
||||
def validate_type(value: Any) -> None:
|
||||
if value is None:
|
||||
return
|
||||
if isinstance(value, (str, int, float, bool)):
|
||||
return
|
||||
if isinstance(value, (dict, list)):
|
||||
for item in value.values() if isinstance(value, dict) else value:
|
||||
validate_type(item)
|
||||
return
|
||||
raise ValueError(
|
||||
f"Unsupported type {type(value).__name__} in inputs. "
|
||||
"Only str, int, float, bool, dict, and list are allowed."
|
||||
)
|
||||
|
||||
# Validate all input values
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
validate_type(value)
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
|
||||
|
||||
if input_string is None or not input_string:
|
||||
return ""
|
||||
if "{" not in input_string and "}" not in input_string:
|
||||
return input_string
|
||||
if not inputs:
|
||||
raise ValueError(
|
||||
"Inputs dictionary cannot be empty when interpolating variables"
|
||||
)
|
||||
|
||||
# The regex pattern to find valid variable placeholders
|
||||
# Matches {variable_name} where variable_name starts with a letter/underscore
|
||||
# and contains only letters, numbers, and underscores
|
||||
pattern = r"\{([A-Za-z_][A-Za-z0-9_]*)\}"
|
||||
|
||||
# Find all matching variables in the input string
|
||||
variables = re.findall(pattern, input_string)
|
||||
result = input_string
|
||||
|
||||
# Check if all variables exist in inputs
|
||||
missing_vars = [var for var in variables if var not in inputs]
|
||||
if missing_vars:
|
||||
raise KeyError(
|
||||
f"Template variable '{missing_vars[0]}' not found in inputs dictionary"
|
||||
)
|
||||
|
||||
# Replace each variable with its value
|
||||
for var in variables:
|
||||
if var in inputs:
|
||||
placeholder = "{" + var + "}"
|
||||
value = str(inputs[var])
|
||||
result = result.replace(placeholder, value)
|
||||
|
||||
return result
|
||||
Reference in New Issue
Block a user