mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-22 22:58:13 +00:00
refactor: simplify TaskGuardrail to use LLM for validation, no code generation
This commit is contained in:
@@ -1,39 +1,40 @@
|
||||
from typing import Any, Tuple
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agent import Agent, LiteAgentOutput
|
||||
from crewai.llm import LLM
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
class TaskGuardrailResult(BaseModel):
|
||||
valid: bool = Field(
|
||||
description="Whether the task output complies with the guardrail"
|
||||
)
|
||||
feedback: str | None = Field(
|
||||
description="A feedback about the task output if it is not valid",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class TaskGuardrail:
|
||||
"""A task that validates the output of another task using generated Python code.
|
||||
|
||||
This class generates and executes Python code to validate task outputs based on
|
||||
specified criteria. It uses an LLM to generate the validation code and provides
|
||||
safety guardrails for code execution.
|
||||
The code is executed in a Docker container if available, otherwise it is executed in a sandboxed environment.
|
||||
If unsafe mode is enabled, the code is executed in the current environment.
|
||||
This class is used to validate the output from a Task based on specified criteria.
|
||||
It uses an LLM to validate the output and provides a feedback if the output is not valid.
|
||||
|
||||
Args:
|
||||
description (str): The description of the validation criteria.
|
||||
task (Task, optional): The task whose output needs validation.
|
||||
llm (LLM, optional): The language model to use for code generation.
|
||||
additional_instructions (str, optional): Additional instructions for the guardrail task.
|
||||
unsafe_mode (bool, optional): Whether to run the code in unsafe mode.
|
||||
Raises:
|
||||
ValueError: If no valid LLM is provided.
|
||||
"""
|
||||
|
||||
generated_code: str = ""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
description: str,
|
||||
task: Task | None = None,
|
||||
llm: LLM | None = None,
|
||||
additional_instructions: str = "",
|
||||
unsafe_mode: bool = False,
|
||||
):
|
||||
self.description = description
|
||||
|
||||
@@ -47,84 +48,36 @@ class TaskGuardrail:
|
||||
)
|
||||
self.llm: LLM | None = llm or fallback_llm
|
||||
|
||||
self.additional_instructions = additional_instructions
|
||||
self.unsafe_mode = unsafe_mode
|
||||
def _validate_output(self, task_output: TaskOutput) -> LiteAgentOutput:
|
||||
agent = Agent(
|
||||
role="Guardrail Agent",
|
||||
goal="Validate the output of the task",
|
||||
backstory="You are a expert at validating the output of a task. By providing effective feedback if the output is not valid.",
|
||||
llm=self.llm,
|
||||
)
|
||||
|
||||
@property
|
||||
def system_instructions(self) -> str:
|
||||
"""System instructions for the LLM code generation.
|
||||
query = f"""
|
||||
Ensure the following task result complies with the given guardrail.
|
||||
|
||||
Returns:
|
||||
str: Complete system instructions including security constraints.
|
||||
Task result:
|
||||
{task_output.raw}
|
||||
|
||||
Guardrail:
|
||||
{self.description}
|
||||
|
||||
Your task:
|
||||
- Confirm if the Task result complies with the guardrail.
|
||||
- If not, provide clear feedback explaining what is wrong (e.g., by how much it violates the rule, or what specific part fails).
|
||||
- Focus only on identifying issues — do not propose corrections.
|
||||
- If the Task result complies with the guardrail, saying that is valid
|
||||
"""
|
||||
security_instructions = (
|
||||
"- DO NOT wrap the output in markdown or use triple backticks. Return only raw Python code."
|
||||
"- DO NOT use `exec`, `eval`, `compile`, `open`, `os`, `subprocess`, `socket`, `shutil`, or any other system-level modules.\n"
|
||||
"- Your code must not perform any file I/O, shell access, or dynamic code execution."
|
||||
)
|
||||
return (
|
||||
"You are a expert Python developer"
|
||||
"You **must strictly** follow the task description, use the provided raw output as the input in your code. "
|
||||
"Your code must:\n"
|
||||
"- Return results with: print((True, data)) on success, or print((False, 'very detailed error message')) on failure. Make sure the final output is being assined to 'result' variable.\n"
|
||||
"- Use the literal string of the task output (already included in your input) if needed.\n"
|
||||
"- Generate the code **following strictly** the task description.\n"
|
||||
"- Be valid Python 3 — executable as-is.\n"
|
||||
f"{security_instructions}\n"
|
||||
"Additional instructions (do not override the previous instructions):\n"
|
||||
f"{self.additional_instructions}"
|
||||
)
|
||||
|
||||
def user_instructions(self, task_output: TaskOutput) -> str:
|
||||
"""Generates user instructions for the LLM code generation.
|
||||
result = agent.kickoff(query, response_format=TaskGuardrailResult)
|
||||
|
||||
Args:
|
||||
task_output (TaskOutput): The output to be validated.
|
||||
|
||||
Returns:
|
||||
str: Instructions for generating validation code.
|
||||
"""
|
||||
return (
|
||||
"Based on the task description below, generate Python 3 code that validates the task output. \n"
|
||||
"Task description:\n"
|
||||
f"{self.description}\n"
|
||||
"Here is the raw output from the task: \n"
|
||||
f"'{task_output.raw}' \n"
|
||||
"Use this exact string literal inside your generated code (do not reference variables like task_output.raw)."
|
||||
"Now generate Python code that follows the instructions above."
|
||||
)
|
||||
|
||||
def generate_code(self, task_output: TaskOutput) -> str:
|
||||
"""Generates Python code for validating the task output.
|
||||
|
||||
Args:
|
||||
task_output (TaskOutput): The output to be validated.
|
||||
"""
|
||||
if self.llm is None:
|
||||
raise ValueError("Provide a valid LLM to the TaskGuardrail")
|
||||
|
||||
response = self.llm.call(
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": self.system_instructions,
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": self.user_instructions(task_output=task_output),
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
printer = Printer()
|
||||
printer.print(
|
||||
content=f"The following code was generated for the guardrail task:\n{response}\n",
|
||||
color="cyan",
|
||||
)
|
||||
return response
|
||||
return result
|
||||
|
||||
def __call__(self, task_output: TaskOutput) -> Tuple[bool, Any]:
|
||||
"""Executes the validation code on the task output.
|
||||
"""Validates the output of a task based on specified criteria.
|
||||
|
||||
Args:
|
||||
task_output (TaskOutput): The output to be validated.
|
||||
@@ -134,28 +87,16 @@ class TaskGuardrail:
|
||||
- bool: True if validation passed, False otherwise
|
||||
- Any: The validation result or error message
|
||||
"""
|
||||
import ast
|
||||
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
try:
|
||||
result = self._validate_output(task_output)
|
||||
assert isinstance(
|
||||
result.pydantic, TaskGuardrailResult
|
||||
), "The guardrail result is not a valid pydantic model"
|
||||
|
||||
self.generated_code = self.generate_code(task_output)
|
||||
|
||||
result = CodeInterpreterTool(
|
||||
code=self.generated_code, unsafe_mode=self.unsafe_mode
|
||||
).run()
|
||||
|
||||
error_messages = [
|
||||
"Something went wrong while running the code",
|
||||
"No result variable found", # when running in unsafe mode, the final output should be stored in the result variable
|
||||
]
|
||||
|
||||
if any(msg in result for msg in error_messages):
|
||||
return False, result
|
||||
|
||||
if isinstance(result, str):
|
||||
try:
|
||||
result = ast.literal_eval(result)
|
||||
except Exception as e:
|
||||
return False, f"Error parsing result: {str(e)}"
|
||||
|
||||
return result
|
||||
if result.pydantic.valid:
|
||||
return True, task_output.raw
|
||||
else:
|
||||
return False, result.pydantic.feedback
|
||||
except Exception as e:
|
||||
return False, f"Error while validating the task output: {str(e)}"
|
||||
|
||||
@@ -7,8 +7,8 @@ class TaskGuardrailStartedEvent(BaseEvent):
|
||||
"""Event emitted when a guardrail task starts
|
||||
|
||||
Attributes:
|
||||
messages: Content can be either a string or a list of dictionaries that support
|
||||
multimodal content (text, images, etc.)
|
||||
guardrail: The guardrail callable or TaskGuardrail instance
|
||||
retry_count: The number of times the guardrail has been retried
|
||||
"""
|
||||
|
||||
type: str = "task_guardrail_started"
|
||||
@@ -23,8 +23,7 @@ class TaskGuardrailStartedEvent(BaseEvent):
|
||||
super().__init__(**data)
|
||||
|
||||
if isinstance(self.guardrail, TaskGuardrail):
|
||||
assert self.guardrail.generated_code is not None
|
||||
self.guardrail = self.guardrail.generated_code.strip()
|
||||
self.guardrail = self.guardrail.description.strip()
|
||||
elif isinstance(self.guardrail, Callable):
|
||||
self.guardrail = getsource(self.guardrail).strip()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user