Comparing BaseLLM class instead of LLM (#3120)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled

* Compaing BaseLLM class instead of LLM

* Fixed test cases

* Fixed Linting Issues

* removed last line

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
This commit is contained in:
Vidit Ostwal
2025-07-12 06:20:36 +05:30
committed by GitHub
parent eec1262d4f
commit e7a5747c6b
3 changed files with 87 additions and 12 deletions

View File

@@ -12,6 +12,8 @@ from crewai.tools import BaseTool
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.agent_events import LiteAgentExecutionStartedEvent
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
from crewai.llms.base_llm import BaseLLM
from unittest.mock import patch
# A simple test tool
@@ -418,3 +420,76 @@ def test_agent_output_when_guardrail_returns_base_model():
result = agent.kickoff(messages="Top 10 best players in the world?")
assert result.pydantic == Player(name="Lionel Messi", country="Argentina")
def test_lite_agent_with_custom_llm_and_guardrails():
"""Test that CustomLLM (inheriting from BaseLLM) works with guardrails."""
class CustomLLM(BaseLLM):
def __init__(self, response: str = "Custom response"):
super().__init__(model="custom-model")
self.response = response
self.call_count = 0
def call(self, messages, tools=None, callbacks=None, available_functions=None, from_task=None, from_agent=None) -> str:
self.call_count += 1
if "valid" in str(messages) and "feedback" in str(messages):
return '{"valid": true, "feedback": null}'
if "Thought:" in str(messages):
return f"Thought: I will analyze soccer players\nFinal Answer: {self.response}"
return self.response
def supports_function_calling(self) -> bool:
return False
def supports_stop_words(self) -> bool:
return False
def get_context_window_size(self) -> int:
return 4096
custom_llm = CustomLLM(response="Brazilian soccer players are the best!")
agent = LiteAgent(
role="Sports Analyst",
goal="Analyze soccer players",
backstory="You analyze soccer players and their performance.",
llm=custom_llm,
guardrail="Only include Brazilian players"
)
result = agent.kickoff("Tell me about the best soccer players")
assert custom_llm.call_count > 0
assert "Brazilian" in result.raw
custom_llm2 = CustomLLM(response="Original response")
def test_guardrail(output):
return (True, "Modified by guardrail")
agent2 = LiteAgent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm=custom_llm2,
guardrail=test_guardrail
)
result2 = agent2.kickoff("Test message")
assert result2.raw == "Modified by guardrail"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_lite_agent_with_invalid_llm():
"""Test that LiteAgent raises proper error when create_llm returns None."""
with patch('crewai.lite_agent.create_llm', return_value=None):
with pytest.raises(ValueError) as exc_info:
LiteAgent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="invalid-model"
)
assert "Expected LLM instance of type BaseLLM" in str(exc_info.value)