Removing LangChain and Rebuilding Executor (#1322)

* rebuilding executor

* removing langchain

* Making all tests good

* fixing types and adding ability for nor using system prompts

* improving types

* pleasing the types gods

* pleasing the types gods

* fixing parser, tools and executor

* making sure all tests pass

* final pass

* fixing type

* Updating Docs

* preparing to cut new version
This commit is contained in:
João Moura
2024-09-16 14:14:04 -03:00
committed by GitHub
parent 322780a5f3
commit e77442cf34
177 changed files with 27272 additions and 1618561 deletions

View File

@@ -1,7 +1,7 @@
from .converter import Converter, ConverterError
from .file_handler import FileHandler
from .i18n import I18N
from .instructor import Instructor
from .internal_instructor import InternalInstructor
from .logger import Logger
from .parser import YamlParser
from .printer import Printer
@@ -16,7 +16,7 @@ __all__ = [
"ConverterError",
"FileHandler",
"I18N",
"Instructor",
"InternalInstructor",
"Logger",
"Printer",
"Prompts",

View File

@@ -2,8 +2,7 @@ import json
import re
from typing import Any, Optional, Type, Union
from langchain.schema import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from crewai.llm import LLM
from pydantic import BaseModel, ValidationError
from crewai.agents.agent_builder.utilities.base_output_converter import OutputConverter
@@ -28,7 +27,12 @@ class Converter(OutputConverter):
if self.is_gpt:
return self._create_instructor().to_pydantic()
else:
return self._create_chain().invoke({})
return LLM(model=self.llm).call(
[
{"role": "system", "content": self.instructions},
{"role": "user", "content": self.text},
]
)
except Exception as e:
if current_attempt < self.max_attempts:
return self.to_pydantic(current_attempt + 1)
@@ -42,7 +46,14 @@ class Converter(OutputConverter):
if self.is_gpt:
return self._create_instructor().to_json()
else:
return json.dumps(self._create_chain().invoke({}).model_dump())
return json.dumps(
LLM(model=self.llm).call(
[
{"role": "system", "content": self.instructions},
{"role": "user", "content": self.text},
]
)
)
except Exception as e:
if current_attempt < self.max_attempts:
return self.to_json(current_attempt + 1)
@@ -50,33 +61,39 @@ class Converter(OutputConverter):
def _create_instructor(self):
"""Create an instructor."""
from crewai.utilities import Instructor
from crewai.utilities import InternalInstructor
inst = Instructor(
inst = InternalInstructor(
llm=self.llm,
max_attempts=self.max_attempts,
model=self.model,
content=self.text,
instructions=self.instructions,
)
return inst
def _create_chain(self):
def _convert_with_instructions(self):
"""Create a chain."""
from crewai.utilities.crew_pydantic_output_parser import (
CrewPydanticOutputParser,
)
parser = CrewPydanticOutputParser(pydantic_object=self.model)
new_prompt = SystemMessage(content=self.instructions) + HumanMessage(
content=self.text
result = LLM(model=self.llm).call(
[
{"role": "system", "content": self.instructions},
{"role": "user", "content": self.text},
]
)
return new_prompt | self.llm | parser
return parser.parse_result(result)
@property
def is_gpt(self) -> bool:
"""Return if llm provided is of gpt from openai."""
return isinstance(self.llm, ChatOpenAI) and self.llm.openai_api_base is None
return (
"gpt" in str(self.llm).lower()
or "o1-preview" in str(self.llm).lower()
or "o1-mini" in str(self.llm).lower()
)
def convert_to_model(
@@ -89,23 +106,14 @@ def convert_to_model(
model = output_pydantic or output_json
if model is None:
return result
try:
escaped_result = json.dumps(json.loads(result, strict=False))
return validate_model(escaped_result, model, bool(output_json))
except json.JSONDecodeError as e:
Printer().print(
content=f"Error parsing JSON: {e}. Attempting to handle partial JSON.",
color="yellow",
)
except json.JSONDecodeError:
return handle_partial_json(
result, model, bool(output_json), agent, converter_cls
)
except ValidationError as e:
Printer().print(
content=f"Pydantic validation error: {e}. Attempting to handle partial JSON.",
color="yellow",
)
except ValidationError:
return handle_partial_json(
result, model, bool(output_json), agent, converter_cls
)
@@ -140,16 +148,10 @@ def handle_partial_json(
if is_json_output:
return exported_result.model_dump()
return exported_result
except json.JSONDecodeError as e:
Printer().print(
content=f"Error parsing JSON: {e}. The extracted JSON-like string is not valid JSON. Attempting alternative conversion method.",
color="yellow",
)
except ValidationError as e:
Printer().print(
content=f"Pydantic validation error: {e}. The JSON structure doesn't match the expected model. Attempting alternative conversion method.",
color="yellow",
)
except json.JSONDecodeError:
pass
except ValidationError:
pass
except Exception as e:
Printer().print(
content=f"Unexpected error during partial JSON handling: {type(e).__name__}: {e}. Attempting alternative conversion method.",
@@ -170,7 +172,6 @@ def convert_with_instructions(
) -> Union[dict, BaseModel, str]:
llm = agent.function_calling_llm or agent.llm
instructions = get_conversion_instructions(model, llm)
converter = create_converter(
agent=agent,
converter_cls=converter_cls,
@@ -179,6 +180,7 @@ def convert_with_instructions(
model=model,
instructions=instructions,
)
exported_result = (
converter.to_pydantic() if not is_json_output else converter.to_json()
)
@@ -202,9 +204,12 @@ def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
def is_gpt(llm: Any) -> bool:
from langchain_openai import ChatOpenAI
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
"""Return if llm provided is of gpt from openai."""
return (
"gpt" in str(llm).lower()
or "o1-preview" in str(llm).lower()
or "o1-mini" in str(llm).lower()
)
def create_converter(

View File

@@ -1,33 +1,31 @@
import json
from typing import Any, List, Type
import regex
from langchain.output_parsers import PydanticOutputParser
from langchain_core.exceptions import OutputParserException
from langchain_core.outputs import Generation
from typing import Any, Type
from crewai.agents.parser import OutputParserException
from pydantic import BaseModel, ValidationError
class CrewPydanticOutputParser(PydanticOutputParser):
class CrewPydanticOutputParser:
"""Parses the text into pydantic models"""
pydantic_object: Type[BaseModel]
def parse_result(self, result: List[Generation]) -> Any:
result[0].text = self._transform_in_valid_json(result[0].text)
def parse_result(self, result: str) -> Any:
result = self._transform_in_valid_json(result)
# Treating edge case of function calling llm returning the name instead of tool_name
json_object = json.loads(result[0].text)
json_object = json.loads(result)
if "tool_name" not in json_object:
json_object["tool_name"] = json_object.get("name", "")
result[0].text = json.dumps(json_object)
result = json.dumps(json_object)
try:
return self.pydantic_object.model_validate(json_object)
except ValidationError as e:
name = self.pydantic_object.__name__
msg = f"Failed to parse {name} from completion {json_object}. Got: {e}"
raise OutputParserException(msg, llm_output=json_object)
raise OutputParserException(error=msg)
def _transform_in_valid_json(self, text) -> str:
text = text.replace("```", "").replace("json", "")

View File

@@ -4,7 +4,6 @@ from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
from rich.console import Console
@@ -51,7 +50,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=ChatOpenAI(model=self.openai_model_name),
llm=self.openai_model_name,
)
def _evaluation_task(

View File

@@ -1,7 +1,6 @@
import os
from typing import List
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from crewai.utilities import Converter
@@ -93,7 +92,11 @@ class TaskEvaluator:
return converter.to_pydantic()
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
return (
"gpt" in str(self.llm).lower()
or "o1-preview" in str(self.llm).lower()
or "o1-mini" in str(self.llm).lower()
)
def evaluate_training_data(
self, training_data: dict, agent_id: str

View File

@@ -1,50 +0,0 @@
from typing import Any, Optional, Type
import instructor
from pydantic import BaseModel, Field, PrivateAttr, model_validator
class Instructor(BaseModel):
"""Class that wraps an agent llm with instructor."""
_client: Any = PrivateAttr()
content: str = Field(description="Content to be sent to the instructor.")
agent: Optional[Any] = Field(
description="The agent that needs to use instructor.", default=None
)
llm: Optional[Any] = Field(
description="The agent that needs to use instructor.", default=None
)
instructions: Optional[str] = Field(
description="Instructions to be sent to the instructor.",
default=None,
)
model: Type[BaseModel] = Field(
description="Pydantic model to be used to create an output."
)
@model_validator(mode="after")
def set_instructor(self):
"""Set instructor."""
if self.agent and not self.llm:
self.llm = self.agent.function_calling_llm or self.agent.llm
self._client = instructor.patch(
self.llm.client._client,
mode=instructor.Mode.TOOLS,
)
return self
def to_json(self):
model = self.to_pydantic()
return model.model_dump_json(indent=2)
def to_pydantic(self):
messages = [{"role": "user", "content": self.content}]
if self.instructions:
messages.append({"role": "system", "content": self.instructions})
model = self._client.chat.completions.create(
model=self.llm.model_name, response_model=self.model, messages=messages
)
return model

View File

@@ -0,0 +1,47 @@
from typing import Any, Optional, Type
import instructor
from litellm import completion
class InternalInstructor:
"""Class that wraps an agent llm with instructor."""
def __init__(
self,
content: str,
model: Type,
agent: Optional[Any] = None,
llm: Optional[str] = None,
instructions: Optional[str] = None,
):
self.content = content
self.agent = agent
self.llm = llm
self.instructions = instructions
self.model = model
self._client = None
self.set_instructor()
def set_instructor(self):
"""Set instructor."""
if self.agent and not self.llm:
self.llm = self.agent.function_calling_llm or self.agent.llm
self._client = instructor.from_litellm(
completion,
mode=instructor.Mode.TOOLS,
)
def to_json(self):
model = self.to_pydantic()
return model.model_dump_json(indent=2)
def to_pydantic(self):
messages = [{"role": "user", "content": self.content}]
if self.instructions:
messages.append({"role": "system", "content": self.instructions})
model = self._client.chat.completions.create(
model=self.llm, response_model=self.model, messages=messages
)
return model

View File

@@ -1,6 +1,4 @@
from typing import Any, List, Optional
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from crewai.agent import Agent
@@ -27,7 +25,7 @@ class CrewPlanner:
self.tasks = tasks
if planning_agent_llm is None:
self.planning_agent_llm = ChatOpenAI(model="gpt-4o-mini")
self.planning_agent_llm = "gpt-4o-mini"
else:
self.planning_agent_llm = planning_agent_llm

View File

@@ -1,5 +1,8 @@
from typing import Optional
class Printer:
def print(self, content: str, color: str):
def print(self, content: str, color: Optional[str] = None):
if color == "purple":
self._print_purple(content)
elif color == "red":

View File

@@ -1,8 +1,5 @@
from typing import Any, ClassVar, Optional
from langchain.prompts import BasePromptTemplate, PromptTemplate
from pydantic import BaseModel, Field
from typing import Any, Optional
from crewai.utilities import I18N
@@ -14,27 +11,38 @@ class Prompts(BaseModel):
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
SCRATCHPAD_SLICE: ClassVar[str] = "\n{agent_scratchpad}"
use_system_prompt: Optional[bool] = False
agent: Any
def task_execution(self) -> BasePromptTemplate:
def task_execution(self) -> dict[str, str]:
"""Generate a standard prompt for task execution."""
slices = ["role_playing"]
if len(self.tools) > 0:
slices.append("tools")
else:
slices.append("no_tools")
system = self._build_prompt(slices)
slices.append("task")
if not self.system_template and not self.prompt_template:
return self._build_prompt(slices)
if (
not self.system_template
and not self.prompt_template
and self.use_system_prompt
):
return {
"system": system,
"user": self._build_prompt(["task"]),
"prompt": self._build_prompt(slices),
}
else:
return self._build_prompt(
slices,
self.system_template,
self.prompt_template,
self.response_template,
)
return {
"prompt": self._build_prompt(
slices,
self.system_template,
self.prompt_template,
self.response_template,
)
}
def _build_prompt(
self,
@@ -42,12 +50,11 @@ class Prompts(BaseModel):
system_template=None,
prompt_template=None,
response_template=None,
) -> BasePromptTemplate:
) -> str:
"""Constructs a prompt string from specified components."""
if not system_template and not prompt_template:
prompt_parts = [self.i18n.slice(component) for component in components]
prompt_parts.append(self.SCRATCHPAD_SLICE)
prompt = PromptTemplate.from_template("".join(prompt_parts))
prompt = "".join(prompt_parts)
else:
prompt_parts = [
self.i18n.slice(component)
@@ -56,9 +63,14 @@ class Prompts(BaseModel):
]
system = system_template.replace("{{ .System }}", "".join(prompt_parts))
prompt = prompt_template.replace(
"{{ .Prompt }}",
"".join([self.i18n.slice("task"), self.SCRATCHPAD_SLICE]),
"{{ .Prompt }}", "".join(self.i18n.slice("task"))
)
response = response_template.split("{{ .Response }}")[0]
prompt = PromptTemplate.from_template(f"{system}\n{prompt}\n{response}")
prompt = f"{system}\n{prompt}\n{response}"
prompt = (
prompt.replace("{goal}", self.agent.goal)
.replace("{role}", self.agent.role)
.replace("{backstory}", self.agent.backstory)
)
return prompt

View File

@@ -52,7 +52,7 @@ class RPMController(BaseModel):
self._timer = None
def _wait_for_next_minute(self):
time.sleep(60)
time.sleep(1)
self._current_rpm = 0
def _reset_request_count(self):

View File

@@ -1,36 +1,17 @@
from typing import Any, Dict, List
import tiktoken
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
from litellm.integrations.custom_logger import CustomLogger
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
class TokenCalcHandler(BaseCallbackHandler):
model_name: str = ""
token_cost_process: TokenProcess
encoding: tiktoken.Encoding
def __init__(self, model_name, token_cost_process):
self.model_name = model_name
class TokenCalcHandler(CustomLogger):
def __init__(self, token_cost_process: TokenProcess):
self.token_cost_process = token_cost_process
try:
self.encoding = tiktoken.encoding_for_model(self.model_name)
except KeyError:
self.encoding = tiktoken.get_encoding("cl100k_base")
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
def log_success_event(self, kwargs, response_obj, start_time, end_time):
if self.token_cost_process is None:
return
for prompt in prompts:
self.token_cost_process.sum_prompt_tokens(len(self.encoding.encode(prompt)))
async def on_llm_new_token(self, token: str, **kwargs) -> None:
self.token_cost_process.sum_completion_tokens(1)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
self.token_cost_process.sum_successful_requests(1)
self.token_cost_process.sum_prompt_tokens(response_obj["usage"].prompt_tokens)
self.token_cost_process.sum_completion_tokens(
response_obj["usage"].completion_tokens
)