mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
Removing LangChain and Rebuilding Executor (#1322)
* rebuilding executor * removing langchain * Making all tests good * fixing types and adding ability for nor using system prompts * improving types * pleasing the types gods * pleasing the types gods * fixing parser, tools and executor * making sure all tests pass * final pass * fixing type * Updating Docs * preparing to cut new version
This commit is contained in:
@@ -1,23 +1,17 @@
|
||||
import os
|
||||
from inspect import signature
|
||||
from typing import Any, List, Optional, Tuple
|
||||
|
||||
from langchain.agents.agent import RunnableAgent
|
||||
from langchain.agents.tools import BaseTool
|
||||
from langchain.agents.tools import tool as LangChainTool
|
||||
from langchain_core.agents import AgentAction
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from langchain_openai import ChatOpenAI
|
||||
from typing import Any, List, Optional
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
@@ -34,7 +28,6 @@ agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" already defined on line 21
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
@@ -64,7 +57,6 @@ class Agent(BaseAgent):
|
||||
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
|
||||
tools: Tools at agents disposal
|
||||
step_callback: Callback to be executed after each step of the agent execution.
|
||||
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
|
||||
"""
|
||||
|
||||
_times_executed: int = PrivateAttr(default=0)
|
||||
@@ -81,18 +73,20 @@ class Agent(BaseAgent):
|
||||
default=None,
|
||||
description="Callback to be executed after each step of the agent execution.",
|
||||
)
|
||||
use_stop_words: bool = Field(
|
||||
default=True,
|
||||
description="Use stop words for the agent.",
|
||||
)
|
||||
use_system_prompt: Optional[bool] = Field(
|
||||
default=True,
|
||||
description="Use system prompt for the agent.",
|
||||
)
|
||||
llm: Any = Field(
|
||||
default_factory=lambda: ChatOpenAI(
|
||||
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4o")
|
||||
),
|
||||
description="Language model that will run the agent.",
|
||||
description="Language model that will run the agent.", default="gpt-4o"
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
||||
default=None, description="Callback to be executed"
|
||||
)
|
||||
system_template: Optional[str] = Field(
|
||||
default=None, description="System format for the agent."
|
||||
)
|
||||
@@ -108,6 +102,14 @@ class Agent(BaseAgent):
|
||||
allow_code_execution: Optional[bool] = Field(
|
||||
default=False, description="Enable code execution for the agent."
|
||||
)
|
||||
respect_context_window: bool = Field(
|
||||
default=True,
|
||||
description="Keep messages under the context window size by summarizing content.",
|
||||
)
|
||||
max_iter: int = Field(
|
||||
default=15,
|
||||
description="Maximum number of iterations for an agent to execute a task before giving it's best answer",
|
||||
)
|
||||
max_retry_limit: int = Field(
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
@@ -116,38 +118,17 @@ class Agent(BaseAgent):
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
self.agent_ops_agent_name = self.role
|
||||
|
||||
# Different llms store the model name in different attributes
|
||||
model_name = getattr(self.llm, "model_name", None) or getattr(
|
||||
self.llm, "deployment_name", None
|
||||
self.llm = self.llm.model_name if hasattr(self.llm, "model_name") else self.llm
|
||||
self.function_calling_llm = (
|
||||
self.function_calling_llm.model_name
|
||||
if hasattr(self.function_calling_llm, "model_name")
|
||||
else self.function_calling_llm
|
||||
)
|
||||
|
||||
if model_name:
|
||||
self._setup_llm_callbacks(model_name)
|
||||
|
||||
if not self.agent_executor:
|
||||
self._setup_agent_executor()
|
||||
|
||||
return self
|
||||
|
||||
def _setup_llm_callbacks(self, model_name: str):
|
||||
token_handler = TokenCalcHandler(model_name, self._token_process)
|
||||
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
self.llm.callbacks = []
|
||||
|
||||
if not any(
|
||||
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler)
|
||||
for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
|
||||
def _setup_agent_executor(self):
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
@@ -190,15 +171,7 @@ class Agent(BaseAgent):
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
tools = tools or self.tools or []
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
self.create_agent_executor(tools=tools)
|
||||
self.agent_executor.tools = parsed_tools
|
||||
self.agent_executor.task = task
|
||||
|
||||
self.agent_executor.tools_description = self._render_text_description_and_args(
|
||||
parsed_tools
|
||||
)
|
||||
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
|
||||
self.create_agent_executor(tools=tools, task=task)
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
task_prompt = self._training_handler(task_prompt=task_prompt)
|
||||
@@ -211,6 +184,7 @@ class Agent(BaseAgent):
|
||||
"input": task_prompt,
|
||||
"tool_names": self.agent_executor.tools_names,
|
||||
"tools": self.agent_executor.tools_description,
|
||||
"ask_for_human_input": task.human_input,
|
||||
}
|
||||
)["output"]
|
||||
except Exception as e:
|
||||
@@ -231,73 +205,25 @@ class Agent(BaseAgent):
|
||||
|
||||
return result
|
||||
|
||||
def format_log_to_str(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
observation_prefix: str = "Observation: ",
|
||||
llm_prefix: str = "",
|
||||
) -> str:
|
||||
"""Construct the scratchpad that lets the agent continue its thought process."""
|
||||
thoughts = ""
|
||||
for action, observation in intermediate_steps:
|
||||
thoughts += action.log
|
||||
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
|
||||
return thoughts
|
||||
|
||||
def create_agent_executor(self, tools=None) -> None:
|
||||
def create_agent_executor(self, tools=None, task=None) -> None:
|
||||
"""Create an agent executor for the agent.
|
||||
|
||||
Returns:
|
||||
An instance of the CrewAgentExecutor class.
|
||||
"""
|
||||
tools = tools or self.tools or []
|
||||
|
||||
agent_args = {
|
||||
"input": lambda x: x["input"],
|
||||
"tools": lambda x: x["tools"],
|
||||
"tool_names": lambda x: x["tool_names"],
|
||||
"agent_scratchpad": lambda x: self.format_log_to_str(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
}
|
||||
|
||||
executor_args = {
|
||||
"llm": self.llm,
|
||||
"i18n": self.i18n,
|
||||
"crew": self.crew,
|
||||
"crew_agent": self,
|
||||
"tools": self._parse_tools(tools),
|
||||
"verbose": self.verbose,
|
||||
"original_tools": tools,
|
||||
"handle_parsing_errors": True,
|
||||
"max_iterations": self.max_iter,
|
||||
"max_execution_time": self.max_execution_time,
|
||||
"step_callback": self.step_callback,
|
||||
"tools_handler": self.tools_handler,
|
||||
"function_calling_llm": self.function_calling_llm,
|
||||
"callbacks": self.callbacks,
|
||||
"max_tokens": self.max_tokens,
|
||||
}
|
||||
|
||||
if self._rpm_controller:
|
||||
executor_args["request_within_rpm_limit"] = (
|
||||
self._rpm_controller.check_or_wait
|
||||
)
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
|
||||
prompt = Prompts(
|
||||
i18n=self.i18n,
|
||||
agent=self,
|
||||
tools=tools,
|
||||
i18n=self.i18n,
|
||||
use_system_prompt=self.use_system_prompt,
|
||||
system_template=self.system_template,
|
||||
prompt_template=self.prompt_template,
|
||||
response_template=self.response_template,
|
||||
).task_execution()
|
||||
|
||||
execution_prompt = prompt.partial(
|
||||
goal=self.goal,
|
||||
role=self.role,
|
||||
backstory=self.backstory,
|
||||
)
|
||||
|
||||
stop_words = [self.i18n.slice("observation")]
|
||||
|
||||
if self.response_template:
|
||||
@@ -305,11 +231,27 @@ class Agent(BaseAgent):
|
||||
self.response_template.split("{{ .Response }}")[1].strip()
|
||||
)
|
||||
|
||||
bind = self.llm.bind(stop=stop_words)
|
||||
|
||||
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
|
||||
self.agent_executor = CrewAgentExecutor(
|
||||
agent=RunnableAgent(runnable=inner_agent), **executor_args
|
||||
llm=self.llm,
|
||||
task=task,
|
||||
agent=self,
|
||||
crew=self.crew,
|
||||
tools=parsed_tools,
|
||||
prompt=prompt,
|
||||
original_tools=tools,
|
||||
stop_words=stop_words,
|
||||
max_iter=self.max_iter,
|
||||
tools_handler=self.tools_handler,
|
||||
use_stop_words=self.use_stop_words,
|
||||
tools_names=self.__tools_names(parsed_tools),
|
||||
tools_description=self._render_text_description_and_args(parsed_tools),
|
||||
step_callback=self.step_callback,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
respect_context_window=self.respect_context_window,
|
||||
request_within_rpm_limit=self._rpm_controller.check_or_wait
|
||||
if self._rpm_controller
|
||||
else None,
|
||||
callbacks=[TokenCalcHandler(self._token_process)],
|
||||
)
|
||||
|
||||
def get_delegation_tools(self, agents: List[BaseAgent]):
|
||||
@@ -330,7 +272,7 @@ class Agent(BaseAgent):
|
||||
def get_output_converter(self, llm, text, model, instructions):
|
||||
return Converter(llm=llm, text=text, model=model, instructions=instructions)
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
|
||||
def _parse_tools(self, tools: List[Any]) -> List[Any]: # type: ignore
|
||||
"""Parse tools to be used for the task."""
|
||||
tools_list = []
|
||||
try:
|
||||
@@ -373,7 +315,7 @@ class Agent(BaseAgent):
|
||||
)
|
||||
return task_prompt
|
||||
|
||||
def _render_text_description(self, tools: List[BaseTool]) -> str:
|
||||
def _render_text_description(self, tools: List[Any]) -> str:
|
||||
"""Render the tool name and description in plain text.
|
||||
|
||||
Output will be in the format of:
|
||||
@@ -392,7 +334,7 @@ class Agent(BaseAgent):
|
||||
|
||||
return description
|
||||
|
||||
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
|
||||
def _render_text_description_and_args(self, tools: List[Any]) -> str:
|
||||
"""Render the tool name, description, and args in plain text.
|
||||
|
||||
Output will be in the format of:
|
||||
|
||||
Reference in New Issue
Block a user