refactor: Move BaseTool to main package and centralize tool description generation (#1514)

* move base_tool to main package and consolidate tool desscription generation

* update import path

* update tests

* update doc

* add base_tool test

* migrate agent delegation tools to use BaseTool

* update tests

* update import path for tool

* fix lint

* update param signature

* add from_langchain to BaseTool for backwards support of langchain tools

* fix the case where StructuredTool doesn't have func

---------

Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
This commit is contained in:
C0deZ
2024-11-01 12:30:48 -04:00
committed by GitHub
parent 66698503b8
commit e66a135d5d
36 changed files with 547 additions and 217 deletions

View File

@@ -0,0 +1 @@
from .base_tool import BaseTool, tool

View File

@@ -1,25 +0,0 @@
from crewai.agents.agent_builder.utilities.base_agent_tool import BaseAgentTools
class AgentTools(BaseAgentTools):
"""Default tools around agent delegation"""
def tools(self):
from langchain.tools import StructuredTool
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
tools = [
StructuredTool.from_function(
func=self.delegate_work,
name="Delegate work to coworker",
description=self.i18n.tools("delegate_work").format(
coworkers=coworkers
),
),
StructuredTool.from_function(
func=self.ask_question,
name="Ask question to coworker",
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
),
]
return tools

View File

@@ -0,0 +1,32 @@
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.utilities import I18N
from .delegate_work_tool import DelegateWorkTool
from .ask_question_tool import AskQuestionTool
class AgentTools:
"""Manager class for agent-related tools"""
def __init__(self, agents: list[BaseAgent], i18n: I18N = I18N()):
self.agents = agents
self.i18n = i18n
def tools(self) -> list[BaseTool]:
"""Get all available agent tools"""
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
delegate_tool = DelegateWorkTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("delegate_work").format(coworkers=coworkers),
)
ask_tool = AskQuestionTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
)
return [delegate_tool, ask_tool]

View File

@@ -0,0 +1,26 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
class AskQuestionToolSchema(BaseModel):
question: str = Field(..., description="The question to ask")
context: str = Field(..., description="The context for the question")
coworker: str = Field(..., description="The role/name of the coworker to ask")
class AskQuestionTool(BaseAgentTool):
"""Tool for asking questions to coworkers"""
name: str = "Ask question to coworker"
args_schema: type[BaseModel] = AskQuestionToolSchema
def _run(
self,
question: str,
context: str,
coworker: Optional[str] = None,
**kwargs,
) -> str:
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, question, context)

View File

@@ -0,0 +1,67 @@
from typing import Optional, Union
from pydantic import Field
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.task import Task
from crewai.utilities import I18N
class BaseAgentTool(BaseTool):
"""Base class for agent-related tools"""
agents: list[BaseAgent] = Field(description="List of available agents")
i18n: I18N = Field(
default_factory=I18N, description="Internationalization settings"
)
def _get_coworker(self, coworker: Optional[str], **kwargs) -> Optional[str]:
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
if coworker:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return coworker
def _execute(
self, agent_name: Union[str, None], task: str, context: Union[str, None]
) -> str:
try:
if agent_name is None:
agent_name = ""
# It is important to remove the quotes from the agent name.
# The reason we have to do this is because less-powerful LLM's
# have difficulty producing valid JSON.
# As a result, we end up with invalid JSON that is truncated like this:
# {"task": "....", "coworker": "....
# when it should look like this:
# {"task": "....", "coworker": "...."}
agent_name = agent_name.casefold().replace('"', "").replace("\n", "")
agent = [ # type: ignore # Incompatible types in assignment (expression has type "list[BaseAgent]", variable has type "str | None")
available_agent
for available_agent in self.agents
if available_agent.role.casefold().replace("\n", "") == agent_name
]
except Exception as _:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
if not agent:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
agent = agent[0]
task_with_assigned_agent = Task( # type: ignore # Incompatible types in assignment (expression has type "Task", variable has type "str")
description=task,
agent=agent,
expected_output=agent.i18n.slice("manager_request"),
i18n=agent.i18n,
)
return agent.execute_task(task_with_assigned_agent, context)

View File

@@ -0,0 +1,29 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
class DelegateWorkToolSchema(BaseModel):
task: str = Field(..., description="The task to delegate")
context: str = Field(..., description="The context for the task")
coworker: str = Field(
..., description="The role/name of the coworker to delegate to"
)
class DelegateWorkTool(BaseAgentTool):
"""Tool for delegating work to coworkers"""
name: str = "Delegate work to coworker"
args_schema: type[BaseModel] = DelegateWorkToolSchema
def _run(
self,
task: str,
context: str,
coworker: Optional[str] = None,
**kwargs,
) -> str:
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, task, context)

View File

@@ -0,0 +1,186 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Type, get_args, get_origin
from langchain_core.tools import StructuredTool
from pydantic import BaseModel, ConfigDict, Field, validator
from pydantic import BaseModel as PydanticBaseModel
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):
pass
model_config = ConfigDict()
name: str
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool."""
args_schema: Type[PydanticBaseModel] = Field(default_factory=_ArgsSchemaPlaceholder)
"""The schema for the arguments that the tool accepts."""
description_updated: bool = False
"""Flag to check if the description has been updated."""
cache_function: Callable = lambda _args=None, _result=None: True
"""Function that will be used to determine if the tool should be cached, should return a boolean. If None, the tool will be cached."""
result_as_answer: bool = False
"""Flag to check if the tool should be the final agent answer."""
@validator("args_schema", always=True, pre=True)
def _default_args_schema(
cls, v: Type[PydanticBaseModel]
) -> Type[PydanticBaseModel]:
if not isinstance(v, cls._ArgsSchemaPlaceholder):
return v
return type(
f"{cls.__name__}Schema",
(PydanticBaseModel,),
{
"__annotations__": {
k: v for k, v in cls._run.__annotations__.items() if k != "return"
},
},
)
def model_post_init(self, __context: Any) -> None:
self._generate_description()
super().model_post_init(__context)
def run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
print(f"Using Tool: {self.name}")
return self._run(*args, **kwargs)
@abstractmethod
def _run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Here goes the actual implementation of the tool."""
def to_langchain(self) -> StructuredTool:
self._set_args_schema()
return StructuredTool(
name=self.name,
description=self.description,
args_schema=self.args_schema,
func=self._run,
)
@classmethod
def from_langchain(cls, tool: StructuredTool) -> "BaseTool":
if cls == Tool:
if tool.func is None:
raise ValueError("StructuredTool must have a callable 'func'")
return Tool(
name=tool.name,
description=tool.description,
args_schema=tool.args_schema,
func=tool.func,
)
raise NotImplementedError(f"from_langchain not implemented for {cls.__name__}")
def _set_args_schema(self):
if self.args_schema is None:
class_name = f"{self.__class__.__name__}Schema"
self.args_schema = type(
class_name,
(PydanticBaseModel,),
{
"__annotations__": {
k: v
for k, v in self._run.__annotations__.items()
if k != "return"
},
},
)
def _generate_description(self):
args_schema = {
name: {
"description": field.description,
"type": BaseTool._get_arg_annotations(field.annotation),
}
for name, field in self.args_schema.model_fields.items()
}
self.description = f"Tool Name: {self.name}\nTool Arguments: {args_schema}\nTool Description: {self.description}"
@staticmethod
def _get_arg_annotations(annotation: type[Any] | None) -> str:
if annotation is None:
return "None"
origin = get_origin(annotation)
args = get_args(annotation)
if origin is None:
return (
annotation.__name__
if hasattr(annotation, "__name__")
else str(annotation)
)
if args:
args_str = ", ".join(BaseTool._get_arg_annotations(arg) for arg in args)
return f"{origin.__name__}[{args_str}]"
return origin.__name__
class Tool(BaseTool):
func: Callable
"""The function that will be executed when the tool is called."""
def _run(self, *args: Any, **kwargs: Any) -> Any:
return self.func(*args, **kwargs)
def to_langchain(
tools: list[BaseTool | StructuredTool],
) -> list[StructuredTool]:
return [t.to_langchain() if isinstance(t, BaseTool) else t for t in tools]
def tool(*args):
"""
Decorator to create a tool from a function.
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(f: Callable) -> BaseTool:
if f.__doc__ is None:
raise ValueError("Function must have a docstring")
if f.__annotations__ is None:
raise ValueError("Function must have type annotations")
class_name = "".join(tool_name.split()).title()
args_schema = type(
class_name,
(PydanticBaseModel,),
{
"__annotations__": {
k: v for k, v in f.__annotations__.items() if k != "return"
},
},
)
return Tool(
name=tool_name,
description=f.__doc__,
func=f,
args_schema=args_schema,
)
return _make_tool
if len(args) == 1 and callable(args[0]):
return _make_with_name(args[0].__name__)(args[0])
if len(args) == 1 and isinstance(args[0], str):
return _make_with_name(args[0])
raise ValueError("Invalid arguments")

View File

@@ -10,6 +10,7 @@ import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools import BaseTool
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
from crewai.utilities import I18N, Converter, ConverterError, Printer
@@ -49,7 +50,7 @@ class ToolUsage:
def __init__(
self,
tools_handler: ToolsHandler,
tools: List[Any],
tools: List[BaseTool],
original_tools: List[Any],
tools_description: str,
tools_names: str,
@@ -298,22 +299,7 @@ class ToolUsage:
"""Render the tool name and description in plain text."""
descriptions = []
for tool in self.tools:
args = {
name: {
"description": field.description,
"type": field.annotation.__name__,
}
for name, field in tool.args_schema.model_fields.items()
}
descriptions.append(
"\n".join(
[
f"Tool Name: {tool.name.lower()}",
f"Tool Description: {tool.description}",
f"Tool Arguments: {args}",
]
)
)
descriptions.append(tool.description)
return "\n--\n".join(descriptions)
def _function_calling(self, tool_string: str):