feat: replace embedchain with native crewai adapter (#451)

- Remove embedchain adapter; add crewai rag adapter and update all search tools  
- Add loaders: pdf, youtube (video & channel), github, docs site, mysql, postgresql  
- Add configurable similarity threshold, limit params, and embedding_model support  
- Improve chromadb compatibility (sanitize metadata, convert columns, fix chunking)  
- Fix xml encoding, Python 3.10 issues, and youtube url spoofing  
- Update crewai dependency and instructions; refresh uv.lock  
- Update tests for new rag adapter and search params
This commit is contained in:
Greyson LaLonde
2025-09-18 19:02:22 -04:00
committed by GitHub
parent 8d9cee45f2
commit e29ca9ec28
33 changed files with 1317 additions and 277 deletions

View File

@@ -1,43 +1,54 @@
import os
from tempfile import NamedTemporaryFile
from tempfile import TemporaryDirectory
from typing import cast
from unittest import mock
from pathlib import Path
from pytest import fixture
from crewai_tools.adapters.embedchain_adapter import EmbedchainAdapter
from crewai_tools.adapters.crewai_rag_adapter import CrewAIRagAdapter
from crewai_tools.tools.rag.rag_tool import RagTool
@fixture(autouse=True)
def mock_embedchain_db_uri():
with NamedTemporaryFile() as tmp:
uri = f"sqlite:///{tmp.name}"
with mock.patch.dict(os.environ, {"EMBEDCHAIN_DB_URI": uri}):
yield
def test_custom_llm_and_embedder():
def test_rag_tool_initialization():
"""Test that RagTool initializes with CrewAI adapter by default."""
class MyTool(RagTool):
pass
tool = MyTool(
config=dict(
llm=dict(
provider="openai",
config=dict(model="gpt-3.5-custom"),
),
embedder=dict(
provider="openai",
config=dict(model="text-embedding-3-custom"),
),
)
)
tool = MyTool()
assert tool.adapter is not None
assert isinstance(tool.adapter, EmbedchainAdapter)
assert isinstance(tool.adapter, CrewAIRagAdapter)
adapter = cast(CrewAIRagAdapter, tool.adapter)
assert adapter.collection_name == "rag_tool_collection"
assert adapter._client is not None
adapter = cast(EmbedchainAdapter, tool.adapter)
assert adapter.embedchain_app.llm.config.model == "gpt-3.5-custom"
assert (
adapter.embedchain_app.embedding_model.config.model == "text-embedding-3-custom"
)
def test_rag_tool_add_and_query():
"""Test adding content and querying with RagTool."""
class MyTool(RagTool):
pass
tool = MyTool()
tool.add("The sky is blue on a clear day.")
tool.add("Machine learning is a subset of artificial intelligence.")
result = tool._run(query="What color is the sky?")
assert "Relevant Content:" in result
result = tool._run(query="Tell me about machine learning")
assert "Relevant Content:" in result
def test_rag_tool_with_file():
"""Test RagTool with file content."""
with TemporaryDirectory() as tmpdir:
test_file = Path(tmpdir) / "test.txt"
test_file.write_text("Python is a programming language known for its simplicity.")
class MyTool(RagTool):
pass
tool = MyTool()
tool.add(str(test_file))
result = tool._run(query="What is Python?")
assert "Relevant Content:" in result