Squashed 'packages/tools/' content from commit 78317b9c

git-subtree-dir: packages/tools
git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
This commit is contained in:
Greyson Lalonde
2025-09-12 21:58:02 -04:00
commit e16606672a
303 changed files with 49010 additions and 0 deletions

View File

@@ -0,0 +1,153 @@
# ParallelSearchTool
Unified Parallel web search tool using the Parallel Search API (v1beta). Returns ranked results with compressed excerpts optimized for LLMs.
- **Quickstart**: see the official docs: [Search API Quickstart](https://docs.parallel.ai/search-api/search-quickstart)
- **Processors**: guidance on `base` vs `pro`: [Processors](https://docs.parallel.ai/search-api/processors)
## Why this tool
- **Single-call pipeline**: Replaces search → scrape → extract with a single, lowlatency API call.
- **LLMready**: Returns compressed excerpts that feed directly into LLM prompts (fewer tokens, less pre/postprocessing).
- **Flexible**: Control result count and excerpt length; optionally restrict sources via `source_policy`.
## Environment
- `PARALLEL_API_KEY` (required)
Optional (for the agent example):
- `OPENAI_API_KEY` or other LLM provider keys supported by CrewAI
## Parameters
- `objective` (str, optional): Naturallanguage research goal (≤ 5000 chars)
- `search_queries` (list[str], optional): Up to 5 keyword queries (each ≤ 200 chars)
- `processor` (str, default `base`): `base` (fast/low cost) or `pro` (freshness/quality)
- `max_results` (int, default 10): ≤ 40 (subject to processor limits)
- `max_chars_per_result` (int, default 6000): ≥ 100; values > 30000 not guaranteed
- `source_policy` (dict, optional): Source policy for domain inclusion/exclusion
Notes:
- API is in beta; default rate limit is 600 RPM. Contact support for production capacity.
## Direct usage (when published)
```python
from crewai_tools import ParallelSearchTool
tool = ParallelSearchTool()
resp_json = tool.run(
objective="When was the United Nations established? Prefer UN's websites.",
search_queries=["Founding year UN", "Year of founding United Nations"],
processor="base",
max_results=5,
max_chars_per_result=1500,
)
print(resp_json) # => {"search_id": ..., "results": [{"url", "title", "excerpts": [...]}, ...]}
```
### Parameters you can pass
Call `run(...)` with any of the following (at least one of `objective` or `search_queries` is required):
```python
tool.run(
objective: str | None = None, # ≤ 5000 chars
search_queries: list[str] | None = None, # up to 5 items, each ≤ 200 chars
processor: str = "base", # "base" (fast) or "pro" (freshness/quality)
max_results: int = 10, # ≤ 40 (processor limits apply)
max_chars_per_result: int = 6000, # ≥ 100 (values > 30000 not guaranteed)
source_policy: dict | None = None, # optional SourcePolicy config
)
```
Example with `source_policy`:
```python
source_policy = {
"allow": {"domains": ["un.org"]},
# "deny": {"domains": ["example.com"]}, # optional
}
resp_json = tool.run(
objective="When was the United Nations established?",
processor="base",
max_results=5,
max_chars_per_result=1500,
source_policy=source_policy,
)
```
## Example with agents
Heres a minimal example that calls `ParallelSearchTool` to fetch sources and has an LLM produce a short, cited answer.
```python
import os
from crewai import Agent, Task, Crew, LLM, Process
from crewai_tools import ParallelSearchTool
# LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
temperature=0.5,
api_key=os.getenv("GEMINI_API_KEY")
)
# Parallel Search
search = ParallelSearchTool()
# User query
query = "find all the recent concerns about AI evals? please cite the sources"
# Researcher agent
researcher = Agent(
role="Web Researcher",
backstory="You are an expert web researcher",
goal="Find cited, high-quality sources and provide a brief answer.",
tools=[search],
llm=llm,
verbose=True,
)
# Research task
task = Task(
description=f"Research the {query} and produce a short, cited answer.",
expected_output="A concise, sourced answer to the question. The answer should be in this format: [query]: [answer] - [source]",
agent=researcher,
output_file="answer.mdx",
)
# Crew
crew = Crew(
agents=[researcher],
tasks=[task],
verbose=True,
process=Process.sequential,
)
# Run the crew
result = crew.kickoff(inputs={'query': query})
print(result)
```
Output from the agent above:
```md
Recent concerns about AI evaluations include: the rise of AI-related incidents alongside a lack of standardized Responsible AI (RAI) evaluations among major industrial model developers - [https://hai.stanford.edu/ai-index/2025-ai-index-report]; flawed benchmark datasets that fail to account for critical factors, leading to unrealistic estimates of AI model abilities - [https://www.nature.com/articles/d41586-025-02462-5]; the need for multi-metric, context-aware evaluations in medical imaging AI to ensure reliability and clinical relevance - [https://www.sciencedirect.com/science/article/pii/S3050577125000283]; challenges related to data sets (insufficient, imbalanced, or poor quality), communication gaps, and misaligned expectations in AI model training - [https://www.oracle.com/artificial-intelligence/ai-model-training-challenges/]; the argument that LLM agents should be evaluated primarily on their riskiness, not just performance, due to unreliability, hallucinations, and brittleness - [https://www.technologyreview.com/2025/06/24/1119187/fix-ai-evaluation-crisis/]; the fact that the AI industry's embraced benchmarks may be close to meaningless, with top makers of AI models picking and choosing different responsible AI benchmarks, complicating efforts to systematically compare risks and limitations - [https://themarkup.org/artificial-intelligence/2024/07/17/everyone-is-judging-ai-by-these-tests-but-experts-say-theyre-close-to-meaningless]; and the difficulty of building robust and reliable model evaluations, as many existing evaluation suites are limited in their ability to serve as accurate indicators of model capabilities or safety - [https://www.anthropic.com/research/evaluating-ai-systems].
```
Tips:
- Ensure your LLM provider keys are set (e.g., `GEMINI_API_KEY`) and CrewAI model config is in place.
- For longer analyses, raise `max_chars_per_result` or use `processor="pro"` (higher quality, higher latency).
## Behavior
- Singlerequest web research; no scraping/postprocessing required.
- Returns `search_id` and ranked `results` with compressed `excerpts`.
- Clear error handling on HTTP/timeouts.
## References
- Search API Quickstart: https://docs.parallel.ai/search-api/search-quickstart
- Processors: https://docs.parallel.ai/search-api/processors

View File

@@ -0,0 +1,7 @@
from .parallel_search_tool import ParallelSearchTool
__all__ = [
"ParallelSearchTool",
]

View File

@@ -0,0 +1,119 @@
import os
from typing import Any, Dict, List, Optional, Type, Annotated
import requests
from crewai.tools import BaseTool, EnvVar
from pydantic import BaseModel, Field
class ParallelSearchInput(BaseModel):
"""Input schema for ParallelSearchTool using the Search API (v1beta).
At least one of objective or search_queries is required.
"""
objective: Optional[str] = Field(
None,
description="Natural-language goal for the web research (<=5000 chars)",
max_length=5000,
)
search_queries: Optional[List[Annotated[str, Field(max_length=200)]]] = Field(
default=None,
description="Optional list of keyword queries (<=5 items, each <=200 chars)",
min_length=1,
max_length=5,
)
processor: str = Field(
default="base",
description="Search processor: 'base' (fast/low cost) or 'pro' (higher quality/freshness)",
pattern=r"^(base|pro)$",
)
max_results: int = Field(
default=10,
ge=1,
le=40,
description="Maximum number of search results to return (processor limits apply)",
)
max_chars_per_result: int = Field(
default=6000,
ge=100,
description="Maximum characters per result excerpt (values >30000 not guaranteed)",
)
source_policy: Optional[Dict[str, Any]] = Field(
default=None, description="Optional source policy configuration"
)
class ParallelSearchTool(BaseTool):
name: str = "Parallel Web Search Tool"
description: str = (
"Search the web using Parallel's Search API (v1beta). Returns ranked results with "
"compressed excerpts optimized for LLMs."
)
args_schema: Type[BaseModel] = ParallelSearchInput
env_vars: List[EnvVar] = [
EnvVar(
name="PARALLEL_API_KEY",
description="API key for Parallel",
required=True,
),
]
package_dependencies: List[str] = ["requests"]
search_url: str = "https://api.parallel.ai/v1beta/search"
def _run(
self,
objective: Optional[str] = None,
search_queries: Optional[List[str]] = None,
processor: str = "base",
max_results: int = 10,
max_chars_per_result: int = 6000,
source_policy: Optional[Dict[str, Any]] = None,
**_: Any,
) -> str:
api_key = os.environ.get("PARALLEL_API_KEY")
if not api_key:
return "Error: PARALLEL_API_KEY environment variable is required"
if not objective and not search_queries:
return "Error: Provide at least one of 'objective' or 'search_queries'"
headers = {
"x-api-key": api_key,
"Content-Type": "application/json",
}
try:
payload: Dict[str, Any] = {
"processor": processor,
"max_results": max_results,
"max_chars_per_result": max_chars_per_result,
}
if objective is not None:
payload["objective"] = objective
if search_queries is not None:
payload["search_queries"] = search_queries
if source_policy is not None:
payload["source_policy"] = source_policy
request_timeout = 90 if processor == "pro" else 30
resp = requests.post(self.search_url, json=payload, headers=headers, timeout=request_timeout)
if resp.status_code >= 300:
return f"Parallel Search API error: {resp.status_code} {resp.text[:200]}"
data = resp.json()
return self._format_output(data)
except requests.Timeout:
return "Parallel Search API timeout. Please try again later."
except Exception as exc: # noqa: BLE001
return f"Unexpected error calling Parallel Search API: {exc}"
def _format_output(self, result: Dict[str, Any]) -> str:
# Return the full JSON payload (search_id + results) as a compact JSON string
try:
import json
return json.dumps(result or {}, ensure_ascii=False)
except Exception:
return str(result or {})