mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-28 09:38:17 +00:00
Squashed 'packages/tools/' content from commit 78317b9c
git-subtree-dir: packages/tools git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
This commit is contained in:
54
crewai_tools/tools/contextualai_query_tool/README.md
Normal file
54
crewai_tools/tools/contextualai_query_tool/README.md
Normal file
@@ -0,0 +1,54 @@
|
||||
# ContextualAIQueryTool
|
||||
|
||||
## Description
|
||||
This tool is designed to integrate Contextual AI's enterprise-grade RAG agents with CrewAI. Run this tool to query existing Contextual AI RAG agents that have been pre-configured with documents and knowledge bases.
|
||||
|
||||
## Installation
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]' contextual-client
|
||||
```
|
||||
|
||||
**Note**: You'll need a Contextual AI API key. Sign up at [app.contextual.ai](https://app.contextual.ai) to get your free API key.
|
||||
|
||||
## Example
|
||||
|
||||
Make sure you have already created a Contextual agent and ingested documents into the datastore before using this tool.
|
||||
|
||||
```python
|
||||
from crewai_tools import ContextualAIQueryTool
|
||||
|
||||
# Initialize the tool
|
||||
tool = ContextualAIQueryTool(api_key="your_api_key_here")
|
||||
|
||||
# Query the agent with IDs
|
||||
result = tool._run(
|
||||
query="What are the key findings in the financial report?",
|
||||
agent_id="your_agent_id_here",
|
||||
datastore_id="your_datastore_id_here" # Optional: for document readiness checking
|
||||
)
|
||||
print(result)
|
||||
```
|
||||
|
||||
The result will contain the generated answer to the user's query.
|
||||
|
||||
## Parameters
|
||||
**Initialization:**
|
||||
- `api_key`: Your Contextual AI API key
|
||||
|
||||
**Query (_run method):**
|
||||
- `query`: The question or query to send to the agent
|
||||
- `agent_id`: ID of the existing Contextual AI agent to query (required)
|
||||
- `datastore_id`: Optional datastore ID for document readiness verification (if not provided, document status checking is disabled with a warning)
|
||||
|
||||
## Key Features
|
||||
- **Document Readiness Checking**: Automatically waits for documents to be processed before querying
|
||||
- **Grounded Responses**: Built-in grounding ensures factual, source-attributed answers
|
||||
|
||||
## Use Cases
|
||||
- Query pre-configured RAG agents with document collections
|
||||
- Access enterprise knowledge bases through user queries
|
||||
- Build specialized domain experts with access to curated documents
|
||||
|
||||
For more detailed information about Contextual AI's capabilities, visit the [official documentation](https://docs.contextual.ai).
|
||||
Reference in New Issue
Block a user