mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-28 09:38:17 +00:00
Squashed 'packages/tools/' content from commit 78317b9c
git-subtree-dir: packages/tools git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
This commit is contained in:
58
crewai_tools/tools/contextualai_create_agent_tool/README.md
Normal file
58
crewai_tools/tools/contextualai_create_agent_tool/README.md
Normal file
@@ -0,0 +1,58 @@
|
||||
# ContextualAICreateAgentTool
|
||||
|
||||
## Description
|
||||
This tool is designed to integrate Contextual AI's enterprise-grade RAG agents with CrewAI. This tool enables you to create a new Contextual RAG agent. It uploads your documents to create a datastore and returns the Contextual agent ID and datastore ID.
|
||||
|
||||
## Installation
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
|
||||
```
|
||||
pip install 'crewai[tools]' contextual-client
|
||||
```
|
||||
|
||||
**Note**: You'll need a Contextual AI API key. Sign up at [app.contextual.ai](https://app.contextual.ai) to get your free API key.
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from crewai_tools import ContextualAICreateAgentTool
|
||||
|
||||
# Initialize the tool
|
||||
tool = ContextualAICreateAgentTool(api_key="your_api_key_here")
|
||||
|
||||
# Create agent with documents
|
||||
result = tool._run(
|
||||
agent_name="Financial Analysis Agent",
|
||||
agent_description="Agent for analyzing financial documents",
|
||||
datastore_name="Financial Reports",
|
||||
document_paths=["/path/to/report1.pdf", "/path/to/report2.pdf"],
|
||||
)
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
- `api_key`: Your Contextual AI API key
|
||||
- `agent_name`: Name for the new agent
|
||||
- `agent_description`: Description of the agent's purpose
|
||||
- `datastore_name`: Name for the document datastore
|
||||
- `document_paths`: List of file paths to upload
|
||||
|
||||
Example result:
|
||||
|
||||
```
|
||||
Successfully created agent 'Research Analyst' with ID: {created_agent_ID} and datastore ID: {created_datastore_ID}. Uploaded 5 documents.
|
||||
```
|
||||
|
||||
You can use `ContextualAIQueryTool` with the returned IDs to query the knowledge base and retrieve relevant information from your documents.
|
||||
|
||||
## Key Features
|
||||
- **Complete Pipeline Setup**: Creates datastore, uploads documents, and configures agent in one operation
|
||||
- **Document Processing**: Leverages Contextual AI's powerful parser to ingest complex PDFs and documents
|
||||
- **Vector Storage**: Use Contextual AI's datastore for large document collections
|
||||
|
||||
## Use Cases
|
||||
- Set up new RAG agents from scratch with complete automation
|
||||
- Upload and organize document collections into structured datastores
|
||||
- Create specialized domain agents for legal, financial, technical, or research workflows
|
||||
|
||||
For more detailed information about Contextual AI's capabilities, visit the [official documentation](https://docs.contextual.ai).
|
||||
Reference in New Issue
Block a user