Squashed 'packages/tools/' content from commit 78317b9c

git-subtree-dir: packages/tools
git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
This commit is contained in:
Greyson Lalonde
2025-09-12 21:58:02 -04:00
commit e16606672a
303 changed files with 49010 additions and 0 deletions

View File

@@ -0,0 +1,56 @@
# CodeDocsSearchTool
## Description
The CodeDocsSearchTool is a powerful RAG (Retrieval-Augmented Generation) tool designed for semantic searches within code documentation. It enables users to efficiently find specific information or topics within code documentation. By providing a `docs_url` during initialization, the tool narrows down the search to that particular documentation site. Alternatively, without a specific `docs_url`, it searches across a wide array of code documentation known or discovered throughout its execution, making it versatile for various documentation search needs.
## Installation
To start using the CodeDocsSearchTool, first, install the crewai_tools package via pip:
```shell
pip install 'crewai[tools]'
```
## Example
Utilize the CodeDocsSearchTool as follows to conduct searches within code documentation:
```python
from crewai_tools import CodeDocsSearchTool
# To search any code documentation content if the URL is known or discovered during its execution:
tool = CodeDocsSearchTool()
# OR
# To specifically focus your search on a given documentation site by providing its URL:
tool = CodeDocsSearchTool(docs_url='https://docs.example.com/reference')
```
Note: Substitute 'https://docs.example.com/reference' with your target documentation URL and 'How to use search tool' with the search query relevant to your needs.
## Arguments
- `docs_url`: Optional. Specifies the URL of the code documentation to be searched. Providing this during the tool's initialization focuses the search on the specified documentation content.
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python
tool = CodeDocsSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google",
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)
```

View File

@@ -0,0 +1,56 @@
from typing import Any, Optional, Type
try:
from embedchain.models.data_type import DataType
EMBEDCHAIN_AVAILABLE = True
except ImportError:
EMBEDCHAIN_AVAILABLE = False
from pydantic import BaseModel, Field
from ..rag.rag_tool import RagTool
class FixedCodeDocsSearchToolSchema(BaseModel):
"""Input for CodeDocsSearchTool."""
search_query: str = Field(
...,
description="Mandatory search query you want to use to search the Code Docs content",
)
class CodeDocsSearchToolSchema(FixedCodeDocsSearchToolSchema):
"""Input for CodeDocsSearchTool."""
docs_url: str = Field(..., description="Mandatory docs_url path you want to search")
class CodeDocsSearchTool(RagTool):
name: str = "Search a Code Docs content"
description: str = (
"A tool that can be used to semantic search a query from a Code Docs content."
)
args_schema: Type[BaseModel] = CodeDocsSearchToolSchema
def __init__(self, docs_url: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
if docs_url is not None:
self.add(docs_url)
self.description = f"A tool that can be used to semantic search a query the {docs_url} Code Docs content."
self.args_schema = FixedCodeDocsSearchToolSchema
self._generate_description()
def add(self, docs_url: str) -> None:
if not EMBEDCHAIN_AVAILABLE:
raise ImportError("embedchain is not installed. Please install it with `pip install crewai-tools[embedchain]`")
super().add(docs_url, data_type=DataType.DOCS_SITE)
def _run(
self,
search_query: str,
docs_url: Optional[str] = None,
) -> str:
if docs_url is not None:
self.add(docs_url)
return super()._run(query=search_query)